Принципиальная схема твердотельного реле на 12В

Твердотельное реле своими руками: инструкция по сборке и советы по подключению

Твердотельное реле (ТТР) – прибор из серии электронных компонентов немеханического действия. Отсутствие механики открывает больше возможностей любителям электроники сделать твердотельное реле своими руками для личного пользования.

Рассмотрим такую возможность подробнее.

Конструкция и принцип действия ТТР

Если большая часть подобной электроники традиционно содержит подвижные детали контактных групп, твердотельное реле таких деталей не имеет совсем. Коммутация цепи схемой устройства осуществляется по принципу электронного ключа. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники – силовые транзисторы, симисторы, тиристоры.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования.

В рамках плотного изучения прибора сразу же следует выделить преимущественные стороны ТТР:

  • коммутация мощной нагрузки;
  • высокая скорость переключения;
  • идеальная гальваническая развязка;
  • способность кратковременно держать высокие перегрузки.

Среди механических конструкций найти реле с подобными параметрами реально не представляется возможным. Вообще, преимущества относительно механических собратьев у твердотельных реле выражаются внушительным списком.

Условия эксплуатации для ТТР практически не ограничивают применение этих устройств. К тому же отсутствие подвижных механических деталей благоприятно сказывается на продолжительности службы приборов. Так что есть все основания, чтобы заняться твердотельным реле – собрать устройство своими руками.

Однако, справедливости ради, наряду с положительными моментами следует отметить свойства реле, характеризуемые как недостатки. Так, для эксплуатации мощных приборов, как правило, требуется дополнительный компонент конструкции, который предназначен отводить тепло.

Радиаторы охлаждения твердотельных реле имеют габаритные размеры в несколько раз превосходящие габариты ТТР, что снижает удобство и рациональность монтажа.

Приборы ТТР в процессе эксплуатации (в закрытом состоянии) дают обратный ток утечки и показывают нелинейную вольт-амперную характеристику. Не все твердотельные реле допустимо использовать без ограничений в характеристиках коммутируемых напряжений.

Отдельные виды устройств предназначены коммутировать только постоянный ток. Внедрение твердотельных реле в схему обычно требует обращения к дополнительным мерам, направленным на блокировку ложных срабатываний.

Твердотельные реле часто можно встретить в общем электрощитке квартиры.

Как работает твердотельное реле?

Управляющий сигнал (обычно напряжение низкого уровня, исходящее, к примеру, от контроллера управления) подаётся на светодиод оптоэлектронной пары, присутствующей в схеме ТТР. Светодиод начинает излучать свет в сторону фотодиода, который в свою очередь открывается и начинает пропускать ток.

Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Ключ открывается, замыкает цепь нагрузки.

Так работает функция коммутации прибора. Вся электроника традиционно заключена в монолитный корпус. Собственно, поэтому устройство и получило название твердотельного реле.

А о том, как подключить твердотельное реле можно прочесть в этом материале.

Разновидности твердотельных переключателей

Весь существующий ассортимент приборов условно можно разделить по группам, исходя из категории подключаемой нагрузки, особенностей контроля и коммутации напряжений.

Таким образом, в общей сложности наберётся три группы:

  1. Устройства, действующие в цепях постоянного тока.
  2. Устройства, действующие в цепях переменного тока.
  3. Универсальные конструкции.

Первая группа представлена приборами с параметрами рабочих управляющих напряжений 3 – 32 вольта. Это относительно малогабаритная электроника, наделённая светодиодной индикацией, способная функционировать без перебоев при температурах -35 / +75 ºС.

Вторая группа – устройства, предназначенные под установку в сетях переменного напряжения. Здесь представлены конструкции ТТР для установки в сетях переменного тока, управляемые напряжением 24 – 250 вольт. Есть устройства, способные коммутировать нагрузку высокой мощности.

Третья группа – приборы универсального назначения. Схемотехника этого вида устройств поддерживает ручную настройку на использование в тех или иных условиях.

Если отталкиваться от характера подключаемой нагрузки, следует выделить два вида твердотельных реле переменного тока: однофазные и трёхфазные. Оба вида рассчитаны на коммутацию достаточно мощной нагрузки при токах 10 – 75 А. При этом пиковые кратковременные значения тока могут достигать величины 500 А.

В качестве нагрузки, коммутируемой твердотельными реле, могут выступать ёмкостные, резистивные, индукционные цепи. Конструкции переключателей позволяют без лишнего шума, плавно управлять, к примеру, нагревательными элементами, лампами накаливания, электродвигателями.

Надёжность работы в достаточной степени высока. Но во многом стабильность и долговечность твердотельных реле зависит от качества производства изделий. Так, устройства, выпускаемые под некой торговой маркой «Impuls», часто отмечаются непродолжительным сроком службы.

С другой стороны, изделия фирмы «Schneider Electric» не оставляют повода для критики.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выводы и полезное видео по теме

Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:

Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:

Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

Твердотельное реле своими руками

Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить.
Еще одна статья – «Транзисторный ключ с оптической развязкой»

Читайте также:  Bitcoin и Ripple: чем отличаются

В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.

Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

TLP590B Datasheet Pdf

Такие преобразователи на выходе обеспечивают напряжение порядка 9 вольт, что вполне достаточно для управления моп-транзисторами. Из документации на эти преобразователи видно, что они очень маломощные и способные отдать на выходе ток всего лишь порядка 12мкА. У моп-транзисторов есть такой параметр – Заряд затвора – Qg. Пока затвор данного транзистора не получит необходимый заряд – транзистор не начнет открываться. Скорость заряда зависит от тока, который может обеспечить цепь управления, чем больше ток управления, тем быстрее затвор получает необходимый заряд, тем быстрее открывается транзистор. Тем меньше будет время, когда коммутирующий транзистор будет находиться в активной зоне выходной характеристики – тем меньше на нем будет выделяться тепла. Но в нашем случае, когда транзистор работает не в преобразователе, на относительно высоких частотах, а в качестве реле, вкл – выкл, ток в 12 мкА будет достаточен. Правда лучше конечно выбирать ключевые транзисторы с малым зарядом затвора. Например.

AOT7S60 Datasheet Pdf

Этот транзистор способен коммутировать напряжение 600В при токе стока 7А. Мощность стока при температуре +25 С — 100Вт. При этом заряд затвора Qg всего 8,2 нанокулона = 8,2nC. Для сравнения популярный транзистор IRF840 имеет Qg = 63nC.

IRF840 Datasheet Pdf

Для управления низковольтными нагрузками можно применить транзистор irlr024zpbf. При данных режимах измерения ток стока – 5А, напряжение сток – исток – 44В, напряжение затвор – исток -5В, имеет типовое значение заряд затвора Qg = 6,6nC.

irlr024zpbf Datasheet Pdf

Но у меня таких транзисторов нет и я для реле использовал транзисторы IRL2505 с каналом типа n. У данного транзистора Qg = 130nC !

IRF2505 Datasheet Pdf

Другой транзистор с каналом типа р — IRF4905, у этого транзистора максимальный Qg = 180nC .

IRF4905 Datasheet Pdf

Схему собрал самую простую, ту что на рисунке 4

В качестве коммутирующего транзистора в этой схеме использован транзистор IRF4905 с каналом – р. Транзистор не был снабжен теплоотводом и в открытом состоянии нагревался до +60˚С при токе 2А. Напряжение 3,3В коммутировал нормально. Теперь, имея в своем распоряжении такой преобразователь, что нам мешает использовать в положительном проводе питания и транзистор с каналом n?

Результат превзошел мои ожидания. Транзистор IRF2505 без радиатора практически не грелся при токе нагрузки 4А. при напряжении на нагрузке 12,6 В В обоих экспериментах ток управления я выставил примерно 10 мА. Максимальный ток светодиода по документам – 50 мА. Больше 10 мА не стоит увеличивать ток – практически ни чего не меняется. Я очень доволен таким реле. Если описать параметры этой релюхи, применительно к электромагнитному реле, то они были бы такими. Напряжение срабатывания – какое хочешь ! Только подбирай R2. Ток срабатывания – 10 мА. Ток и напряжение коммутации – какое хочешь . (В разумных пределах конечно)Только подбирай транзисторы. Не слабо. Хотелось бы проверить данные устройства с коммутацией емкостных и индуктивных нагрузок. Это позже. Пока искал буквы на клавиатуре, пришла еще одна мысль. Если транзистор поставить в диагональ диодного моста, то можно коммутировать переменные напряжения. Таким реле можно коммутировать обмотки трансформаторов. Пока все. Всем удачи. К.В.Ю.

Твердотельное реле

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, н о имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Виды ТТР

Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.

На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

Слева однофазное реле, справа трехфазное.

Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.

ТТР по типу управления

ТТР могут управляться с помощью:

1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

ТТР по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным током

управление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока, а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

ТТР с фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями. Вот небольшая табличка-подсказка для этих типов реле

Давайте еще раз взглянем на наше ТТР

SSR – это значит однофазное твердотельное реле.

40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер.

D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем “плюс”, а на №4 мы подаем “минус”.

А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась! Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле.

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Плюсы и минусы твердотельного реле

  • включение и выключение цепей без электромагнитных помех
  • высокое быстродействие
  • отсутствие шума и дребезга контактов
  • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
  • возможность работы во взрывоопасной среде, так как нет дугового разряда
  • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
  • надёжная изоляция между входными и коммутируемыми цепями
  • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
  • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

Где купить твердотельное реле

Любые виды твердотельных реле вы всегда можете найти на Али по этой ссылке.

При написании статьи использовалась информация, взятая по этой ссылке.

Как своими руками собрать схему твердотельного реле

Даже начинающий радиолюбитель способен собрать твердотельное реле. Это устройство создано на базе полупроводниковых радиодеталей. Силовые ключи собраны на тиристорах, транзисторах либо симисторах. Для изготовления схемы твердотельного реле своими руками, стоит выяснить принцип работы и особенности подключения устройства. В результате с его помощью можно повысить надежность и безопасность электроцепи.

Читайте также:  Сенсорный выключатель света своими руками — схема

Преимущества и недостатки

В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.

Однако начать стоит с его описания основных преимуществ:

  • Возможность коммутировать мощные нагрузки.
  • Переключение происходит с высокой скоростью.
  • Качественная гальваническая развязка.
  • Способно выдерживает серьезные перегрузки на коротком временном отрезке.

Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства. Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики. Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Некоторые виды устройств способны работать только в сетях с постоянным током. При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.

Виды устройств

Твердотельные реле можно разделить на несколько групп в соответствии с определенными параметрами. Чаще всего для классификации этих прибор используется категория подключенной нагрузки, а также способ контроля и коммутации напряжения. Таким образом, можно выделить 3 вида реле:

  • Приборы, работающие в цепях постоянного тока.
  • Переключатели для электроцепей переменного тока.
  • Универсальные реле.

К первой группе принадлежат ТТР с показателями коммутируемых напряжений 3−32 В. Они обладают небольшими габаритами, оснащены светодиодной индикацией и могут эффективно работать в температурном диапазоне от -35 до 75 градусов. Представителями второй категории являются переключатели, предназначенные для работы в электроцепях переменного тока при напряжении 24−220 В. Универсальные устройства имеют возможность ручной регулировки для использования в конкретных условиях.

Если классифицировать приборы по характеру подсоединенной нагрузки, то можно выделить 2 типа приборов, работающих в сетях переменного тока, — одно- и трехфазные. С их помощью можно управлять довольно высокой нагрузкой при силе тока 10−75 А. также стоит обратить внимание на пиковые показатели электротока, которые способны достигать 500 А.

Твердотельные переключатели можно применять в различных типах цепей, например, емкостных либо резистивных. Их конструкция позволяет избавиться от шума во время работы, а также добиться плавного управления приводами, например, электромоторами или лампами. ТТР отличаются высокой надежностью, но во многом срок службы приборов зависит от производителя.

Рекомендации по изготовлению

В соответствии с особенностями конструкции, схему прибора стоит собирать не на текстолите, а с помощью навесного монтажа. Существует довольно много схемотехнических решений, а выбирать нужный следует в зависимости от различных параметров, например, коммутируемой мощности.

Электронные элементы и проверка работоспособности

В качестве примера можно рассмотреть простую схему.

Применение оптической пары МОС3083 позволяет формировать управляющий сигнал, входное напряжение которого находится в диапазоне 5−24 В. Чтобы продлить срок работы светодиода АЛ307А, в схему введена цепочка, состоящая из сопротивления и стабилитрона. Найти все электронные элементы будет несложно. Собранная схема в обязательном порядке проверяется на работоспособность.

Для этого можно не подключать к цепи напряжение 220 В, а ограничиться параллельным подсоединением тестера к линии управления симистора. На измерительном приборе предварительно следует выбрать режим «мОм» и подать питание в 5−24 В на участок генерации управляющего напряжения. Если схема была собрана правильно, то тестер покажет разницу сопротивлений в диапазоне мОм-кОм.

Конструкция корпуса

Основанием самодельного твердотельного реле будет пластина из алюминия толщиной от 3 до 5 мм. Размеры пластины принципиального значения не имеют и при выборе материала необходимо учитывать только условия качественного отвода тепла от симистора. Также следует помнить, что поверхность основания должна быть ровной и его необходимо предварительно зачистить с помощью мелкой наждачной бумаги с двух сторон.

Следующим шагом станет установка по периметру пластины бордюра из пластика либо плотного картона. В результате должен получиться короб, который затем заливается эпоксидной смолой. Внутрь корпуса устанавливается собранная с помощью навесного монтажа схема реле. При этом на пластине из алюминия должен располагаться только симистор.

Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Также следует помнить, что у некоторых симисторов анод не изолирован, и они устанавливаются только через слюдяную подложку.

Заливка компаундом

Для изготовления смеси потребуется алебастр и эпоксидная смола без отвердителя. Использование алебастра позволяет решить сразу две задачи — создается смесь идеальной консистенции и получается достаточное количество раствора при минимальном расходе эпоксидной смолы. Во время приготовления компаунд тщательно перемешивается, после чего можно добавить отвердитель и снова перемешать.

После этого созданная схема аккуратно заливается компаундом до верхнего уровня, оставляя на поверхности только часть головки контрольного светодиода. При изготовлении корпуса твердотельного переключателя можно использовать любые растворы, подходящие для литья. Единственным критерием при выборе ингредиентов является отсутствие способности проводить электроток.

Самодельное ТТР станет хорошим выбором для подключения к низковольтной цепи с малой мощностью. Собирать более мощные приборы, рассчитанные на высокие напряжения нецелесообразно. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор.

Твердотельное реле своими руками

Для многих схем силовой электроники твердотельное реле стало не просто желательно но и необходимо. Их преимущество – в количестве срабатываний несоизмеримо больших, по сравнению с электромеханическими, на порядок (а на практике и того больше).

До изготовления твердотельного реле я обычно изготавливал цепочки из симистора и схемы управления с гальванической развязкой типа симистороной оптопары MOC30***. Для примера будем использовать следующие (базовые) компоненты:

  1. Симисторная оптопара MOC3083 (VD1)
  2. Симистор с изолированным анодом марки BT139-800 16A (V1 от Philips)
  3. Сопротивление для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт)
  4. Светодиод индикации АЛ307А (LD1)
  5. Резистор на управляющий электрод симистора 160 Ом (R2 , 0.125Вт)


Рис 1

Твердотельное реле – эта как бы инкапсуляция такой цепочки. Для изготовления твердотельного реле воспользуемся рекомендациями предложенными в сборнике [1 ] . В ней автор рекомендует для повышения надежности электронных устройств (и самодельных в том числе) заключать их в эпоксидный брикет, приводя подробное описание данной технологии. Посмотрим, что нам понадобиться для изготовления твердотельного реле по этой методике. (см. фото 1). Отметим попутно, что во время написания статьи [ 1 ] клеевые пистолеты ещё не были столь распространены как сейчас.

Итак, выбираем подложку из металла, который быстро проводит тепло, например алюминий. Размер и толщина подложки выбираются исходя из количества тепла, которое потребуется отвести от симистора с учетом того , что сама подложка для этой цели, может быть установлена на металлической поверхности. Далее выбираем опалубку для заливки, с таким расчетом, чтобы внутри нее разместить все элементы указанной цепочки. В качестве опалубки используем любые удобные элементы из пластика напр. цилиндр от пластиковой трубы, часть пластикового короба от кабельного лотка, в моем случае опалубка изготовлена из части пенала для принтерных расходников. Далее приклеиваем пистолетом опалубку к подложке, и заклеиваем отверстия и щели, если они есть. Помещаем схему, спаенную и проверенную. Здесь необходимо отметить, что выводы у симистора определяются не всегда однозначно. Чтобы проверить открывается ли симистор от протекания тока через светодиод оптопары MOC3083, в большинстве случаев, можно узнать (без подключения напряжения 220В), подцепившись тестером на мегаомах к выходным концам симистора схемы. При открывании симистора сопротивление будет падать от десятком мегаом до единиц килом (по тестеру).

Для симистора, в обязательном порядке, делаем промежуточный слой между спинкой корпуса и подложкой из теплопроводной пасты марки КПТ-8. Если у симистора анод не является изолированным, необходима также изоляционная прокладка, например из пластинки слюды, вырезанной по размеру корпуса и обработанной пастой КПТ с обеих сторон (все элементы схемы не должны иметь электрического контакта с подложкой!). Далее, прижав корпус симистора, фиксируем его на подложке с помощью клеевого пистолета (рис 2).

Укладываем остальные части схемы, обращая внимание, чтобы они не касались металлической подложки, а находились как бы «на весу». Готовим компаунд для заливки формы в отдельной емкости. Для этого основной компонент эпоксидки смешиваем с порошком алебастра, не добавляя пока отвердитель. Следует отметить, что алебастр добавляем не только для увеличения объема компаунда, но и для снижения текучести эпоксидки. В противном случае раствор ЭДП будет вытекать через мельчайшие отверстия в форме. Добавляем отвердитель к полученной массе компаунда и вновь перемешиваем. Масса должна сохранять текучесть. Заполнив форму не следует беспокоиться об образовавшихся неровностях на поверхности брикета. (рис 3).

Если расположить его на горизонтальной поверхности, то силы гравитации сделают поверхность достаточно гладкой в течении получаса (рис 4) и имеющую цвет светлого кофе. Автор далек от мысли, чтобы настаивать на указанных материалах и технологии, как единственно возможной. Наверняка, например, подойдет использование клея типа «жидкие гвозди» или полиуретановая пена в качестве компаунда, лишь бы материал обладал низкой электропроводностью и достаточной электрической прочностью.

Теперь внимательно посмотрим на исходную схему. Если подключать новоиспеченное реле к Arduino и т.п. устройствам на микроконтроллерах с питанием не более 5В, этой схемы будет достаточно. Что же делать , если необходимо расширить диапазон управляющих напряжений, скажем, от 5 до 24 В? Схемотехника MOC30** позволяет нам это сделать без дополнительных ухищрений, поскольку диапазон тока через светодиод оптопары простирается там до 50 мА. Сложнее обстоит дело с индикаторным светодиодом, таким, например, как АЛ307А . Согласно рекомендациям производителей: не следует устанавливать постоянный прямой ток /ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА. Т.Е. нужно каким-то образом организовать схему так, чтобы ток, протекающий по цепи АЛ307 – 1,2 MOC3083 мало зависел бы от прилагаемого напряжения. Кажется , что наиболее просто этого добиться подключив стабилитрон D после балластного сопротивления R1, учитывая тот факт, что напряжение на светодиоде, как правило линейно зависит от протекаемого тока, начиная от некоторого уровня (напр. 1,6 В) . В этом случае стабилитрон с опорным напряжением 3,3В откроется при достижения опорного, и будет «стравливать» избыточный ток через себя.

Читайте также:  Часы реального времени на ЖК-дисплее: схема

Но более эффективны в этом случае схемы с питанием данной цепи источником тока [ 2, 3 ].

Следуя рекомендациям указанных источников, построим схему с питанием стабильным током в диапазоне 7—14 мА и в диапазоне питающих напряжений 4—24В.


Рис 2

Освоив данную технологию и «набив руку», без сомнения, можно изготавливать твердотельные реле в больших количествах словно «горячие пирожки».

Литература:

  1. Бирюков С.А.Устройства на микросхемах: цифровые измерительные устройства, источники питания, любительские конструкции, Москва «Солон-Р», 2000, стр. 188
  2. П. Хоровиц, У Хилл Искусство схемотехники, Москва, «Мир» ред. М.В. Гальперина 1986 Том 1. Стр.103
  3. Горошков Б.И. Радиоэлектронные устройства (Справочник) М. «Радио и связь» 1984г

Инструменты

Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее.

Оглавление:

Твердотельное реле – принцип работы

Твердотельное реле – это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током – транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Преимущества и сфера использования твердотельного реле

Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле:

1. Небольшое потребление энергии – из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%.

2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать.

3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска.

4. Низкая шумопроизводительность – еще одно преимущество твердотельного реле перед контактерами.

5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания.

6. Имеют большую сферу использования и подходят для разных приборов.

7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера.

8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

9. Твердотельное реле позволяет осуществить более миллиарда срабатываний.

10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора.

11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами.

Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства:

  • система, в которой производится регулировка температуры при помощи тэна;
  • чтобы поддержать постоянную температуру в технологическом процессе;
  • для коммутирования цепи управления;
  • при выполнении замены пускателей бесконтактного реверсного типа;
  • управление электрическими двигателями;
  • контроль нагрева, трансформаторов и других технических приборов;
  • регулирование уровня освещения.

Разновидности твердотельных реле

Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения:

1. Твердотельные реле постоянного тока – используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов.

2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт.

3. Твердотельные реле с ручным управление, позволяют настраивать тип работы.

В соотношении с типом нагрузки выделяют:

  • однофазное твердотельное реле,
  • трехфазное твердотельное реле.

Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений.

Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство.

Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия.

Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию.

В соотношении с методом коммукации выделяют:

  • устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции;
  • реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание;
  • реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

В соотношении с конструкцией твердотельные реле бывают:

  • монтируемые на Д И Н рейки,
  • универсальные, устанавливаемые на планки переходного типа.

Выбор и покупка твердотельного реле

Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Твердотельное реле цена определяется такими характеристиками:

  • тип устройства,
  • наличие крепежных элементов,
  • материал, из которого изготовлен корпус,
  • мгновенное или постепенное включение,
  • наличие дополнительных функций,
  • производитель,
  • мощность,
  • потребление электроэнергии,
  • габариты прибора.

Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя.

Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле.

Есть несколько разновидностей предохранителей:

  • g R – используются во широком диапазоне мощностей, отличаются быстрым действием;
  • g S – используются во всем диапазоне тока, защищаю элементы полупроводников от повышенных нагрузок электросети;
  • a R – защищают элементы полупроводникового типа от возникновения коротких замыканий.

Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки.

Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью.

Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит.

Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз.

Особенности подключения твердотельного реле

Рекомендации по самостоятельному подключению твердотельного реле:

1. Соединения не требуют использования пайки, а осуществляются винтовым способом.

2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения.

3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства.

4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов.

5. Перед включением реле следует убедиться в правильной коммутации соединений.

6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения.

7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе.

Ссылка на основную публикацию