Эмиттерный повторитель — схема, расчёт, принцип работы

4. Повторитель напряжения.

Существуют три способа включения биполярного транзистора:

– с общим коллектором (ОК – эмиттерный повторитель (ЭП);
– с общим эмиттером (ОЭ);
– с общей базой (ОБ). Аналогично для полевых транзисторов:
– с общим стоком (ОС);
– с общим истоком (ОИ), истоковый повторитель (ИП);
– с общим затвором (ОЗ).

В общем случае ЭП (ИП) имеет наибольшее входное сопротивление и наименьшее выходное. Этот тип каскада используют для усиления сигнала по току. Коэффициент передачи по напряжению близок к единице, потому он и называется повторителем. Однако это справедливо при достаточно низком сопротивлении источника сигнала и на низкой частоте. При бесконечно большом сопротивлении источника сигнала перестаёт действовать 100% последовательная ООС по напряжению и выходное сопротивление стремится к Rвых каскада с ОЭ, резко возрастает коэффициент гармоник, который минимален при Rr=0.

Rвх = rб + (1+h21э)Rн
Rвых = rэ + (Rr + rб)/(1 + h21э)
где rб – сопротивление базы (1. 20 Ом и более);
h21э – безразмерный статистический коэффициент передачи тока (beta);
rэ = Fт/Iк (мА);
Fт = 25 мВ – температурный потенциал,
Rr – выходное сопротивление источника сигнала.

Входное сопротивление резко уменьшается в случае коротких импульсов и на высоких частотах. На высоких частотах входная ёмкость повторителя зависит, главным образом, от Сн и грубо может быть оценена как Сн/h21э. Выходное сопротивление повторителя на высоких частотах может иметь индуктивный характер, поэтому при определённых Сн ЭП могут давать колебательные переходные процессы и даже переходить в режим автогенерации. Однако наиболее “опасным” следствием ёмкостной нагрузки является склонность однотактных повторителей к нелинейным искажениям сигнала высокой частоты. Наиболее понятно объяснение этого явления на примере передачи фронта и спада импульсного сигнала (рис.60) [8].

При передаче фронта к току транзистора помимо тока Iэ=Uвых/Rэ добавляется ток заряда Сн.

При прохождении спада сигнала ток перезаряда не может превысить ток, протекающий через Rэ, а не через транзистор. Если Uвx будет снижаться быстрее перезаряда Сн, то напряжение на базе окажется ниже, чем на эмиттере, и транзистор закроется.

Максимальная частота, передаваемая повторителем без искажений fmax = Iэ/2пUmCн, где Um – амплитуда сигнала.

Как видно из формулы, расширить полосу пропускания ЭП можно увеличением тока эмиттера. Характерные искажения сигнала высокой частоты в ЭП носят пилообразный характер (рис.61).

Истоковый повторитель (по сравнению с ЭП) имеет значительно большие значения как выходного сопротивления (несколько сот Ом при токах стока в несколько мА), так и коэффициента гармоник. Замена полевого транзистора составным (рис. 12,14,17,18) уменьшает как выходное сопротивление, так и вносимые искажения (см. 1 часть статьи).

Применение составного транзистора позволяет увеличить входное сопротивление и повысить нагрузочную способность. К примеру, повторитель на составном транзисторе Шиклаи (рис.62) имеет Rвх >= 1 МОм, Rвых = R3/2

Для того чтобы повторитель идеально повторял входное напряжение на нагрузке, необходимо чтобы напряжение Uэб было постоянно во всем диапазоне изменения входного напряжения.

Это условие можно выполнить, если застабилизировать ток эмиттера (коллектора). Для этого достаточно в схеме (рис.71) токозадающий резистор R3 заменить активным источником тока с токозадающим резистором, равным сопротивлению нагрузки (рис.72). В этом случае ток коллектора транзистора VT3

Простейший двухтактный ЭП показан на рис.73. Резистор R уменьшает искажения типа “ступеньки” в момент перехода через ноль (т.е. во время отсечки транзисторов). Применение такого повторителя для усиления слабых сигналов (до 0,4. 0,5 В) нецелесообразно.

Введение смещения с помощью диодов (рис.74) или другого генератора напряжения позволяет избавиться от ступеньки. Ток генераторов тока должен быть больше максимального тока базы при полной раскачке выходных транзисторов во избежание запирания диодов.

Эмиттерный повторитель по [13] показан на рис.75. Увеличение входного сопротивления выполнено с помощью следящей обратной связи, рассмотренной выше.

Выходные каскады первых бестрансформаторных усилителей мощности выполнялись по схеме (рис.76) на так называемой квазикомплементарной паре, т.е. верхнее плечо – на составном транзисторе Дарлингтона, а нижнее – на транзисторе Шиклаи. Введение дополнительного транзистора VT2, аналогичного VT4, VT5, симметрирует входное сопротивление плеч. При этом искажения уменьшаются в 2. 3 раза.

Наиболее распространённые двухтактные каскады показаны на рис.77 и 78 на комплементарных транзисторах Шиклаи и Дарлингтона соответственно. Повторитель, показанный на рис.79 [14, 15], сочетает в себе оба типа составных транзисторов. Недостаток схемы (рис.77) в том, что в ней возникают большие сквозные токи при перегрузках, особенно на высоких частотах.

Схемотехнические решения, показанные на рис.80 и 81, позволяют достаточно простым способом исключить полную отсечку предвыходных транзисторов и тем самым уменьшить коммутационные искажения.

В повторителе (рис.82) оригинально решена проблема смещения выходных транзисторов при достаточно высокой термостабильности. Основной недостаток такого повторителя – плохая нагрузочная способность при работе на низкоомную нагрузку, а отсюда и большие вносимые искажения в виде нечётных гармоник. Возможный путь усовершенствования заключается во введении вольтдобавки в эмиттеры входных транзисторов. Другой способ состоит в том, что между базами выходных транзисторов включают обратновключённый диод. В результате при перегрузке, например, положительной полуволной закрывается транзистор VT1, а транзистор VT2 через открывшийся диод подключается к базе транзистора VT3 и тем самым составляет обычную схему Дарлингтона. При этом, естественно, возникают дополнительные коммутационные искажения.

Существенно повысить нагрузочную способность такого повторителя при сохранении высокой термостабильности и КПД можно, если параллельно резисторам R1, R2 включить активные источники тока (АИТ), как показано на рис. 83. Резисторы R3, R4 выбирают из расчёта, чтобы максимальный ток АИТ был больше тока баз выходных транзисторов при максимальной амплитуде сигнала.

Нагрузочная способность повторителя на базе рис.67 также повышена за счёт введения активных источников тока в эмиттеры входных транзисторов (рис.84) [16].

Возможный вариант повышения быстродействия за счёт следящей обратной связи, описанной выше, показан на рис.85. В отличие от предыдущей схемы, входные транзисторы работают при большем примерно на 0,6 В напряжении питания за счёт дополнительных транзисторов.

Увеличить выходную мощность повторителя в 4 раза при том же напряжении питания позволяет мостовая схема (рис.86). Управление таким повторителем осуществляют парафазным сигналом.

Парафазного управляющего сигнала требует и схема (рис.87), питание которой осуществляют от двух незаземлённых источников тока постоянного напряжения. Достоинство схемы в том, что она не требует комплементарных транзисторов. А, как известно, абсолютно комплементарных транзисторов практически не существует.

Несколько слов о применении полевых транзисторов в мощном повторителе. Вследствие меньшей чем у биполярных транзисторов крутизны и её нелинейной зависимости от уровня входного сигнала, нелинейные искажения больше. Поэтому такие каскады должны работать в усилителях с более глубокой ООС.

Очень важным преимуществом мощных полевых транзисторов, особенно СИТ (статических индукционных полевых транзисторов), является высокое быстродействие благодаря отсутствию основных носителей в цепи затвора. Мощность на раскачку, как правило, не превышает нескольких мВт. Такие каскады обладают хорошими передаточными свойствами на высоких частотах и имеют эффект термостабилизации [17].

5. А.с. 1327271 публ. 133-22-87 с.8.
6. Патент ЕПВ 0109080 публ. 3-126-85 с.20.
7. Патент США 4536662 публ. 9-1 26-86.
8. М.Гальперин. Промышленная схемотехника в промышленной автоматике. М, Энергоатомиздат, 1987.
9. Радио 4/81, с.61. За рубежом. Широкополосной повторитель напряжения.
10. А.с. 1298853.
11. А.с 1264303 публ. 133-03-87, с.5.
12. Радио 5/79, с.61. За рубежом. Эмиттерный повторитель с высокой нагрузочной способностью.
13. А.с.1167694.
14. А.с.769703.
15. Пат. США 4454479, публ. 3-126-85, с. 37
16. А.с. 1224966, публ. 14-126-86, с.14
17. П.Шкритек. Справочное руководство по звуковой схемотехнике. М, Мир, 1991, с.204.

1. Эмиттерный повторитель.

Эмиттерный повторитель имеет наибольшее входное сопротивление и наименьшее выходное и используется для усиления сигнала по току, коэффициент усиления по напряжению близок к единице. Однако это справедливо при достаточно низком сопротивлении источника сигнала и на низкой частоте. При бесконечно большом сопротивлении источника сигнала перестаёт действовать 100% последовательная ООС по напряжению и выходное сопротивление стремиться к Rвых каскада с общим эмиттером, резко возрастает коэффициент гармоник, который минимален при Rr=0.

Rвх = rб + (1+h21э)Rн
Rвых = rэ + (Rr + rб)/(1 + h21э)
где rб – сопротивление базы (1. 20 Ом и более);
h21э – безразмерный статистический коэффициент передачи тока (beta);
rэ = Fт/Iк (мА);
Fт = 25 мВ – температурный потенциал,
Rr – выходное сопротивление источника сигнала.

Входное сопротивление резко уменьшается в случае коротких импульсов и на высоких частотах. На высоких частотах входная ёмкость повторителя зависит, главным образом, от Сн и грубо может быть оценена как Сн/h21э. Выходное сопротивление повторителя на высоких частотах может иметь индуктивный характер, поэтому при определении Сн эмиттерный повторители могут давать колебательные переходные процессы и даже переходить в режим автогенерации. Однако наиболее опасным следствием ёмкостной нагрузки является склонность однотактных повторителей к нелинейным искажениям сигнала высокой частоты. Наиболее понятно объяснение этого явления на примере передачи фронта и спада импульсного сигнала:

При передаче фронта к току транзистора помимо тока Iэ=Uвых/Rэ добавляется ток заряда Сн.
При прохождении спада сигнала ток перезаряда не может превысить ток, протекающий через Rэ, а не через транзистор. Если Uвх будет снижаться быстрее перезаряда Сн, то напряжение на базе окажется ниже, чем на эмиттере, и транзистор закроется.
Максимальная частота, передаваемая повторителем без искажений Fmax=Iэ/2nUmCn , где Um – амплитуда сигнала.
Как видно из формулы, расширить полосу пропускания эмиттерного повторителя можно увеличением тока эмиттера. Характерные искажения сигнала высокой частоты в эмиттерном повторителе носят пилообразный характер:

2. Повторитель на составном транзисторе Шиклаи.

Rвх>=1МОм, коэффициент обратной связи около 50 дБ. Характеристика линейна от 10Гц до 100 кГц.

3. Составной транзистор со следящей связью в цепи базы.

Из-за огромного входного сопротивления повторителей на составных транзисторах особенно остро встаёт о цепи смещения базы. Делать сопротивления порядка нескольких мегаом нельзя из-за температурной нестабильности и невозможности обеспечения необходимого тока базы. Поэтому во входном каскаде, как правило, используют полевой транзистор или следящую связь в цепи базы:

Для того что бы искусственно увеличить сопротивление Rк и исключить (нейтрализовать) влияние ёмкости Ск, т.е. исключить её перезаряд, необходимо что бы напряжение Uкб1 было постоянно, т.е. нужно изменять потенциал Uк1 пропорционально потенциалу Uб1, ток через Rк и Ск станет равным нулю, а это равноценно увеличению их комплексного сопротивления. Для реализации этой идеи в коллектор (сток) первого транзистора полностью подаётся переменная составляющая выходного напряжения с помощью конденсатора достаточно большой ёмкости:

или с помощью стабилитрона,схемы сдвига уровня:

или с помощью истокового повторителя:

Аналогичная идея реализована в широкополосном повторителе:

4. Эмиттерный повторитель с повышенным быстродействием.

Реализован за счёт быстродействующей линейной положительной обратной связи с помощью транзисторов VT1-VT3.

5.Повторитель с входным сопротивлением, стремящимся к бесконечности.

Благодаря отражателю тока на транзисторах VT1, VT3, токи коллекторов, а соответственно и токи баз транзисторов VT2 и VT4 равны. А так как токи баз противоположны, то и происходит их компенсация, что эквивалентно Rвх, равному бесконечности.

6. Повторитель с увеличенным входным сопротивлением.

Rвх практически не зависит от h21э.

7.Высоколинейный эмиттерный повторитель с высокой нагрузочной способностью.

Амплитудное входное напряжение такого повторителя достигает напряжения питания. Сопротивление нагрузки: Rн=>R3/2

Для того,что бы повторитель идеально повторял входное напряжение на нагрузке, необходимо что бы напряжение Uэб было постоянно во всём диапазоне изменения входного напряжения.
Это условие можно выполнить, если застабилизировать ток эмиттера (коллектора). Для этого надо в предыдущей схеме токозадающий резистор R3 заменить активным источником тока с токозадающим резистором, равным сопротивлению нагрузки:

Iкп/Rн=const

8. Простейший двухтактный эмиттерный повторитель.

Резистор R уменьшает искажения типа “ступенька” в момент перехода через ноль (т.е. во время отсечки транзисторов). Применение такого повторителя для усиления слабых сигналов (до 0.4. 0.5 В) не целесообразно.

Введение смещения с помощью диодов или другого генератора напряжения позволяет избавиться от ступеньки. Ток генераторов тока должен быть больше максимального тока базы при полной раскачке выходных транзисторов во избежание запирания диодов.

9.Эмиттерный повторитель с увеличенным входным сопротивлением с помощью следящей обратной связи.

10. Выходной каскад на квазикомплементарной паре.

Верхнее плечо – на составном транзисторе Дарлингтона, нижнее – на транзисторе Шиклаи. Введение дополнительного транзистора VT2, аналогично VT4, VT5, симметрируют входное сопротивление плеч. При этом искажения уменьшаются в 2..3 раза.

11. Двухтактные каскады.

По схеме Шиклаи (недостаток – возникновение больших сквозных токов при перегрузках, особенно на высоких частотах)

По схеме Дарлингтона

Повторитель по схеме Шиклаи и Дарлингтона

12. Схемы, позволяющие достаточно простым способом исключить полную отсечку предвыходных транзисторов и тем самым уменьшить коммутационные искажения.

13. Повторитель с высокой термостабильностью.

Недостаток – плохая нагрузочная способность при работе на низкоомную нагрузку, а отсюда и большие вносимые искажения в виде нечётных гармоник.

С повышенной нагрузочной способностью

14. Повторитель с повышенной нагрузочной способностью.

Повышенная нагрузочная способность достигнута за счёт введения активных источников тока в эмиттеры входных транзисторов.

Эмиттерный повторитель — схема, расчёт, принцип работы

О линейности и повторителях (а в конце – сюрприз)

Автор: misterzu
Опубликовано 20.05.2015
Создано при помощи КотоРед.

В этой статье я постараюсь проанализировать проблему линейности каскада, построенном на транзисторе, включенном по схеме с общим коллектором:

..и придумать что с ней можно поделать. Такой каскад так же известен под названием “эмиттерный повторитель” и обычно используется как буфер между высокоомным источником сигнала и низкоомной нагрузкой. Он не изменяет амплитуду сигнала, но возможность подключения более низкоомной нагрузки при той же амплитуде означает усиление мощности, так что этот каскад, как и другие типы транзисторных каскадов, является усилительным. Его часто можно встретить в схемах УНЧ, стоящим в качестве входного буфера. Так же существует множество любительских и не очень конструкций усилителей для головных телефонов, “сердцем” (точнее – выхлопом J), а то и единственным органом которых и является эмиттерный повторитель, построенный на одиночном или составном транзисторе.

Начнем с определения линейности усилительной цепи. Надо признаться, я сейчас загуглил этот термин в поисках откуда бы стырить красивое объяснение этого простого вроде бы по своей сути понятия – и с ходу не нашел такого. Так что придется писать самому.

Задача усилителя (если он усилитель, а не “улучшайзер”) заключается не только в том, чтобы повысить мощность сигнала, но и одновременно максимально сохранить его “форму”. Это значит к примеру, если у нас есть усилитель напряжения, усиливающий напряжение в 2 раза, то в штатных условиях он должен его усиливать именно в 2 раза, независимо от того какой именно величины в него пришел сигнал и какое сопротивление (из допустимого диапазона) имеет нагрузка, подключенная к его выходу. К примеру, рассмотрим гипотетический не идеальный усилитель, выполненный по идеологии УПТ (это значит что он может усиливать не только переменный, но и постоянный сигнал. Так проще.. объяснятьJ), и мысленно подадим ему на вход 0.1В – померяем мысленным вольтметром что на выходе – мысленно допустим, что вольтметр показал 0.1995В. Затем подадим на вход уже 1В, а на выходе при помощи того же вольтметра обнаружим 1.92В. Это значит что наш гипотетический усилитель не смог идеально выполнить свою задачу. Сигнал 0.1В он усилил в 1.995 раз, а сигнал в 1В – он усилил в 1.92 раза. Нелинейность таким образом составила примерно 1 – (1.995/1.92) = 0.039, или 3.9%. По меркам УНЧ – это просто ужасно много. Такое не прощается никаким УНЧ, кроме ламповых J. Потому этот воображаемый девайс, который выполнил свою задачу в качестве виртуального подопытного – мы так же мысленно отправим в топку.

Читайте также:  Цифровой потенциометр своими руками

Вернемся к эмиттерному повторителю. Казалось бы, раз он повторитель, то напряжение на его выходе просто повторяет напряжение на входе, а значит такие проблемы его не должны касаться. Возьмем супер-хороший вольтметр, соберем схемку, проверим – упс… Как же так? Чтобы разобраться – откроем даташит на какой-нибудь транзистор. Например, “народный” BD139. Мне первым нагуглился даташит производителя “Fairchild”. Пролистаем страничку с автопортретом транзистора, ненадолго остановимся на табличке “ Electrical Characteristics”:

Первое что бросается в глаза – всякие цифры, например: напряжение насыщения коллектор-эмиттер, прямое напряжение на переходе база-эмиттер и коэффициент передачи по постоянному току и некоторые другие, совершенно не касающиеся обычного эмиттерного повторителя. А вторая важная деталь состоит в том, что эти цифры указаны не конкретно, а примерно, причем указано целых три разных коэффициента передачи – для разных условий, а потом еще одна табличка – которую кажется производитель добавил чтобы сбить нас с толку. На самом деле со второй табличкой все просто – у этого производителя существуют 3 модификации этого транзистора, обозначаемые как BD139-6, BD139-10 и BD139-16. Они различаются коэффициентом передачи. Скорее всего все они штампуются на одних и тех же линиях, затем замеряются и маркируются согласно тому что получилось в итоге из-за технологических разбросов. Цифры в первой табличке соответствуют всей линейке BD139, а вторая конкретизирует hfe3, и на основе этой конкретики можно прикинуть каков будет hfe2 и hfe1. На самом деле это еще хороший производитель, многие другие штампуют те же BD139 с максимально широким допуском, но совершенно не озабочиваются сортировкой котлет по размеру. А у этого можно хоть прикидочно узнать этот немаловажный параметр перед покупкой. А вот с первой табличкой все намного интереснее и имеет самое прямое отношение к теме статьи. Дело в том что параметры транзистора имеют не только технологический разброс, но так же могут изменяться в зависимости от режима его работы, и судя по цифрам в табличке – могут изменяться значительно. Чтобы понять как именно и от чего они зависят – пролистаем даташит дальше, до прикольных картинок в разделе “Typical Performance Characteristics”. Вот две самые важные для нас картинки оттуда:

Разберемся, что они значат. Оба эти графика отображают зависимость характеристик транзистора от режима его работы, а точнее – от силы тока, проходящего через переход коллектор-база. Первая картинка – показывает зависимость коэффициента передачи от тока коллектора, а вторая – зависимость падения напряжения на переходе база-эмиттер от тока коллектора. На самом деле эти графики не показывают абсолютно всего, что влияет на эти два параметра, но в нормальном режиме работы каскада они таки характеризуют самый главный фактор влияния. Снова вернемся к эмиттерному повторителю. Рассмотрим, что же такого ужасного с ним будет происходить, описанного в этих двух графиках, что вместо повторителя сигнала он окажется немного “искажателем”. Если мы на вход нашего повторителя, сделанного по обычной классической схеме как в картинке из Википедии будем подавать различный сигнал, к примеру напряжением 3 и 5V, то произойдут следующие Очень Важные Вещи:

1) Напряжение на выходе высокоомного источника сигнала будет немного зависеть от силы тока, которую с него будет тянуть повторитель.

2) Напряжение на выходе повторителя (то есть на эмиттере транзистора) будет равняться напряжению приложенному к его входу (то есть на базе транзистора) минус падение напряжение на переходе база-эмиттер

3) Сила тока через переход эмиттер-база будет равна напряжению на выходе повторителя, поделенному на всю ту нагрузку, которая на нем бедном висит. Закон Ома, однако:

4) Сила тока через коллектор будет равна силе тока, которую транзистор сосет из источника сигнала помножить на его коэффициент передачи в этот самый момент

5) А еще сила тока через эмиттер будет равна силе тока через коллектор + сила тока через базу. Правило Кирхгофа работает и для транзисторов тоже. Жаль только что в этих ваших интернетах не нашлось прикольной картинки для него.

Итак, режим работы транзистора определяется вышеописанными факторами. Внимательно посмотрим на первый график, для определенности уточню– на левый график. Из него получается, что коэффициент передачи тока зависит от… тока через коллектор. А ток через коллектор – определяется током через базу помножить на коэффициент передачи, который от него же зависит.. Мозг еще не сломался? Тогда продолжаем. На самом деле самое важное тут то, что с изменением напряжения на выходе транзистору будет сосать из источника ток не пропорционально ЭДС которую тот создает, а с учетом того, что его коэффициент передачи при этом так же изменяется. Источник сигнала на выходе, как помним, довольно высокоомный (по сравнению с нагрузкой). Иначе зачем мы бы вешали после него повторитель? А значит при изменении напряжения источника в N раз, напряжение на входе транзистора упадет на сопротивлении источника в не равное N раз число, ну и напряжение на выходе от этого так же пострадает. Вот она – причина нелинейность. Говоря умным языком – нелинейность коэффициента передачи транзистора в такой схеме ведет к нелинейности ее входного сопротивления, а она в свою очередь ведет к нелинейности функции Выход(вход). Но на самом деле – это не самая страшная причина. Дело в том, что нынче научились делать транзисторы с достаточно линейным коэффициентом передачи, который практически не зависит от тока коллектора. Для примера, график hfe транзистора 2sc4883:

Как видно, сумасшедшие ученые в тайных лабораториях производителей транзисторов свой кофе употребляют совершенно не напрасно и hfe от тока в адекватных пределах оного – практически не зависит. Гораздо больше кстати он зависит только от температуры, что, говорят, может являться причиной искажений термодинамической природы, но рассмотрение и практический анализ этого момента сделало бы написание статьи и ее саму капец каким долгим делом.

Теперь самое время отмотать статью назад и еще раз внимательно посмотреть на оставшийся график, отражающий зависимость падения напряжения на переходе база-эмиттер от того самого тока коллектора. Вспомним опять же, что напряжение на нагрузке зависит от этого падения и что ток коллектора зависит от нагрузки. Сложим эти два печальных факта и поймем что вот она – еще одна причина нелинейности эмиттерного повторителя. Причем, если с предыдущей можно бороться, выбирая транзисторы подороже, то с этой как следует справиться сумасшедшим ученым еще не удалось. Слишком мало кофе они еще выкурили. Но все же у разных транзисторов и в различных диапазонов тока коллектора эта зависимость имеет различный характер, потому выбирая транзистор для УНЧика стоит изучить этот график у кандидатов. К слову в связи с тем что график рисуют в самых различных масштабах – изучать его нужно только с помощью калькулятора, – поделив Vbe при крайних значениях рабочего диапазона тока. А “на глазок” это сделать сложно.

А теперь – слайды.. То есть, практические выводы и эксперименты. Я не первый, кто заметил эту неприятность – люди борются с нею по мере возможности. Самый распространенный метод борьбы – использовать в качестве рабочей (не путать с полезной) нагрузки эмиттерного повторителя источник тока:

Чего только не используют в качестве источника тока – и токовые зеркала, и одиночные биполярные транзисторы с фиксированным смещением базы и фиксированной нагрузкой в эмиттере, и на полевых транзисторах чета мутят.. Но суть одна – стабилизация тока через эмиттер ведет к стабилизации тока через коллектор, ибо как мы помним – ток через эмиттер равен сумме токов через коллектор и базу, причем ток через базу очень мал (в hfe раз меньше тока через коллектор), а значит стабилизация тока эмиттера – неплохо стабилизирует и ток коллектора, а значит – и все характеристики транзистора, которые очень подвержены его влиянию. Беда лишь в том, что помимо рабочей нагрузки к эмиттеру обычно еще подключают и полезную нагрузку, а иначе кому такой повторитель-в-себе был бы нужен. И ток через эту нагрузку стабилизировать никак нельзя, по очевидным причинам. А значит, ток через эмиттер транзистора будет не таким уж стабильным, а сам повторитель – просто более линейным чем в случае применения резистивной нагрузки, но не настолько линейным как хотелось бы например мне. И чем больший ток через нагрузку будет отдавать повторитель по сравнению с током через ИТ – тем все печальнее с линейностью всего повторителя.
Чтобы выжать из повторителя максимальную линейность нужно как-то застабилизировать ток коллектора. Но тут возникает неприятный момент – если мы стабилизируем ток коллектора в типовой схеме повторителя, то оный перестанет выполнять свои прямые функции, так как ток через эмиттерный переход будет почти константным, а значит – будет почти константным и напряжение на нагрузке… Казалось бы – печаль-беда, самое время бахнуть пивка и забить на эти транзисторы, поставив на вход повторителя ОУ и связав их обоих воедино леденящими объятиями ООС… Но настоящий джедай – всегда сражается световым мечом. Даже если в него стреляют из светового калаша. И вот извращение, применить которое можно, если очень получить хочется повторитель линейный:

“Хм, что-то это напоминает”, правда? На самом деле напоминать это должно две вещи. Во-первых то, что эта картинка скопирована из симулятора Multisim, и далее я с помощью него кое что продемонстрирую. Во-вторых – эта схема – возникла из одной из широко применяемых простейших схем источника тока:

… в которую несколько противоестественным путем был внедрен эмиттерный повторитель. В результате чего организм носителя по мере возможности стал стабилизировать ток через коллектор организма-паразита. Строго говоря это уже не каскад с общим коллектором но… Но воспользуемся мультисимом чтобы посмотреть что это нам дало, и вообще дало ли это нам хоть чтото. Итак, как пример для старта – базовый вариант эмиттерного повторителя, работающего на резистивную нагрузку:

Видим, что при потребляемом токе в 10мА повторитель повторяет сигнал в 500 Омную нагрузку, внося в него 0.087% искажений, имеющих характерный для однотактовых схем красиво спадающий спектр. Хорошо это или плохо? Все познается в сравнении. Сравним это, поставив вместо R1 источник тока (идеальный!) “размером” в те же 10мА:

Хм, искажений осталось только 0.024%, неплохо. А теперь этот Франкенштейн – “один-из-трех“:

Ух ты – всего 0.001%! Неплохо. Осталось проверить на практике… Но чтобы проверять на практике было интересно, я решил сделать что-нить более практичное, чем слабенький повторитель. К примеру – повторитель, способный работать в качестве того же буфер-усилителя для низкоомных наушников. Напрямую данную схему нельзя переделать для этого просто подправив номиналы резисторов. Не хватит коэффициента передачи использованных транзисторов, но – можно попробовать использовать составные. В результате в мультисиме родилась следующая схема:

(На самом деле получилось еще несколько вариантов, некоторые из которых включали полевой транзисторв вместо Q1/Q2 и были способны отдавать 3В в нагрузку 8Ом при потребляемом токе 280мА. Но я решил выбрать этот, как вроде самый лучший для данной задачи.)

Помимо использования составных транзисторов, я тут добавил еще вспомогательный ИТ, который еще немного повысил линейность всей схемы. Так же появилась антивозбудная цепочка R3C2, но о ней позже. А вот для сравнения искажения, которые выдает повторитель с нагрузкой-ИТ с аналогичным потребляемым током в аналогичном сигнальном режиме (2Vpk on 32 Ohm load):

Но симулянтор – это конечно показательно и практично, но гораздо показательнее и практичнее – реальная практика. Потому в этот выходной я на скорую руку собрал на макетке девайс:

Первое что я обнаружил при включении – возбуд на мегагерцовых частотах. Но с высокочастотными Дарлингтонами я это уже проходил, и в схеме появились R3/C2. Фактические условия возникновения такого возбуждения зависят от применяемых элементов и разводки, так что указанные номиналы – полезны лишь как ориентир. Более того R3 поставил от балды, возможно схема будет стабильно и при меньшем его значении. Далее я обнаружил, что рабочий ток заметно выше чем расчетный, потому сопротивление R2 на физическом макете составляло 8.2 Ома, а не 6.8 как в модели. По-видимому это объясняется или не точностью данных модели или особенностями конкретно этих транзисторов. После устранения этих мелких неприятностей схема заработала как полагается, нарисовав мне красивейший меандр от генератора осциллографа. Потом я подключил схему к EMU0404 USB и сделал несколько тестов в RMAA под нагрузкой 34 Ома (2 резистора по 68Ом спаянных). Тест показал совпадение с точностью до погрешности предсказанного уровня THD на амплитудах 1В и 3В. После чего я сложил все в тумбочку и сел писать эту статьюJ

Повторитель эмиттерный на транзисторе: принцип работы

История транзисторов начинается с середины 20 века, когда в 1956 году три американских физика – Д. Бардин, У. Браттейн, В. Шокли, были удостоены Нобелевской премии «За исследования полупроводников и открытие транзисторного эффекта».

Радиотехнику, начинающему работу на своем поприще, порой бывает сложно разобраться в электронных схемах и предназначении тех или иных ее составляющих. Для этого существуют определенные наработки – уже придуманные схемы подключения транзисторов и других элементов с определенными свойствами, из которых можно составлять различные устройства. Одним из таких «кирпичиков» в здании электронных схем является эмиттерный повторитель на транзисторе.

Читайте также:  О зарядном устройстве Mastak

Схемы подключения транзисторов

Существует три разновидности включения биполярных транзисторов – с общей базой (ОБ), с общим эмиттером (ОЭ) и общим коллектором (ОК).

Наиболее распространено подключение (ОЭ), так как дает большое усиление по напряжению и току. Одной из особенностей такого подключения является инвертирование входного напряжения на 180 0 . Недостатком подключения является маленькое входное (сотни Ом) и большое выходное (десятки кОм) сопротивление.

При подаче входного напряжения, транзистор открывается и ток проходит через базу на эмиттер, при этом коллекторный ток увеличивается. Ток эмиттера суммируется из тока базы и тока коллектора: ИЕ = ИБ + ИК

В цепи коллектора, на резисторе, появляется напряжение намного большее входного сигнала, что приводит к увеличению выходного напряжения, а соответственно, и силы тока.

Включение транзистора по схеме (ОБ) дает усиление по напряжению и позволяет работать с более широким частотным диапазоном, чем схема с (ОЭ), поэтому часто используется на антенных усилителях. Эта схема позволяет в полной степени использовать способность транзистора к усилению высоких частот сигнала (частотные характеристики). Чем выше частота усиливаемого сигнала, тем меньше усиление по напряжению. Данный каскад имеет маленькое входное и выходное сопротивление.

Включение транзистора с (ОК) дает усиление по току и часто используется как переходник между высокоомным источником питания и низкоомной нагрузкой. Также, данное включение можно использовать при согласовании различных каскадных схем, оно не изменяет полярность входного сигнала.

Общие понятия о повторителе

Повторитель эмиттерный – это усилитель сигнала по току, в котором включение транзистора происходит по схеме (ОК). Коэффициент усиления сигнала по напряжению практически равен единице, напряжение эмиттера равно входному сигналу, поэтому схема носит название эмиттерный повторитель. Принцип работы устройства рассмотрим ниже.

Несмотря на то что повторитель эмиттерный имеет коэффициент передачи по напряжению единицу, его можно отнести к классу усилителей, так как он дает усиление по току, а значит, и по мощности: ИЕ = (β +1) х ИБ , где ИЕ – ток эмиттера, ИБ – ток базы.

При малом сопротивлении источника питания, коллектор транзистора присоединяется к общей шине, а резистор, с которого происходит снятие выходного напряжения, подключается к эмиттерной цепи. Подключение входа и выхода к внешним цепям осуществляется с помощью конденсаторов С1 и С2. При маленьком коэффициенте увеличения по напряжению, коэффициент увеличения по току достигает своего пика в режиме короткого замыкания зажимов на выходе.

Принцип действия

Нагрузкой каскадной схемы повторителя является резистор на эмиттере РЕ. Входной сигнал поступает через первый конденсатор С1, а снятие выходного сигнала происходит через второй конденсатор С2.

Эмиттерный повторитель напряжения имеет очень маленькое входное и большое выходное сопротивление. При переменном токе, когда через транзистор п-р-п типа проходит полуволна положительного переменного напряжения, он сильнее открывается и происходит возрастание тока, при отрицательной полуволне – наоборот. В итоге выходное переменное напряжение имеет одинаковую фазу со входным и является напряжением обратной связи. Выходное напряжение направлено навстречу входному и включено последовательно, поэтому в эмиттерном повторителе используется последовательная отрицательная обратная связь. Выходное напряжение меньше входного на незначительную величину (напряжение база – эмиттер около 0,6 В).

Как сделать расчет схемы

Первоначальными данными, чтобы сделать расчет эмиттерного повторителя, являются ток коллектора (ИК) и напряжение питания (УВХ):

  • Напряжение эмиттера (УЕ) должно соответствовать: УЕ = 0,5 х УВХ (чтобы обеспечить для выходного напряжения максимальный размах).
  • Теперь нужно сделать расчет сопротивления резистора на эмиттере: РЕ = УЕК.
  • Делается расчет сопротивления резисторного делителя: Р12 (подбираем сопротивления так, чтобы ток на делителе был примерно в 10 раз меньше тока на базе): ИД = 0,1 х ИК/β, где β – коэффициент усиления по току транзистора. Сопротивление Р1+ Р2= УВХД.
  • Рассчитываем напряжение базы относительно земли: УБ = УЕ + 0,7.

Отличительные особенности

Повторитель эмиттерный обладает интересной особенностью – ток коллектора имеет зависимость только от нагрузочного сопротивления и входного напряжения, а параметры транзистора существенной роли не играют. Такие схемы считают имеющими 100-процентную обратную связью по напряжению. Можно не бояться спалить транзистор, подавая на базу питание без ограничивающего резистора.

Работа эмиттерного повторителя основана на высоком входном сопротивлении, что позволяет подключать к нему источник сигнала с большим комплексным сопротивлением (например, звукосниматель в радио). Усилитель мощности

Очень часто повторитель эммитерный используется в качестве усилителя мощности в выходных каскадах усилителей. Основной задачей таких узлов является передача определенной мощности на нагрузку. Наиболее важный параметр, который ставится в расчетах усилителя по мощности – это коэффициент усиления мощности, искажение передачи сигнала и КПД (его увеличение необходимо в связи с потреблением большей части мощности источника питания выходным усилителем). Усиление по напряжению не является основным параметром и обычно приближается к единице.

Бывает несколько способов работы такого усилительного каскада, в зависимости от нахождения рабочей точки на графике характеристик и, соответственно, с различным КПД и характеристиками выходного сигнала.

Режимы работы

В рассматриваемых случаях работы эмиттерного повторителя, коллекторный переход будет обратно смещен и режим работы будет зависеть от эмиттерного перехода:

  1. В первом случае смещение эмиттерного перехода происходит таким образом, что транзистор стабильно не переходит в режим насыщения и повторитель работает на прямом участке графика передаточной характеристики (напряжения УК и УЕ одинаковы). Максимальное напряжение выходного сигнала меньше входного напряжения. Коэффициент полезного действия равен отношению мощности, поступающей в нагрузку к мощности от источника питания, и достигает максимума (25 %) при наивысшей амплитуде выходного напряжения. Во избежание рассогласования выходного и входного сигнала, амплитуду выходного напряжения приходится уменьшать, в итоге КПД, тоже уменьшается. Низкий КПД в данном режиме работы повторителя обусловлен независимостью тока, проходящего через транзистор, от напряжения питания и мощность, которая потребляется от источника питания является постоянной величиной. В отсутствие входного сигнала, мощность рассеиваемая транзистором, наибольшая. Поэтому в этом режиме эмиттерный повторитель не используется как усилитель мощности, а скорее как передатчик малоискаженного сигнала.
  2. Еще один рабочий режим усилительного каскада, при котором смещение эмиттерного перехода приводит рабочую точку транзистора на границу области запирания. Если принять напряжение эмиттера (УЕ=0) и входной сигнал не поступает, эмиттерный переход обратно смещен и транзистор находится в закрытом состоянии. Вследствие чего, снижается потребляемая мощность. При прохождении с источника питания положительной полуволны, транзистор отпирается (открывается эмиттерный переход), а отрицательная запирает его (отсутствует выходной сигнал). Второй случай работы усилительного каскада решает проблему с увеличением КПД усилителя, потому что отсутствует ток на транзисторе, если нет напряжения питания. Но есть недостаток – сильное искажение выходного сигнала.

Двухтактная схема

Двухтактный эмиттерный повторитель позволяет сделать усиление по току в положительном и отрицательном диапазонах. Чтобы получить разнополярный выходной сигнал, можно использовать комплементарный эмиттерный повторитель. В принципе, двухтактная схема – это два повторителя, каждый из которых усиливает сигнал в плюсовой или минусовой полуволне. Схема состоит из двух типов биполярных транзисторов (с п-р-п и р-п-р – переходами).

Принцип действия комплементарной схемы

Когда входное питание отсутствует, оба транзистора выключены, в связи с отсутствием напряжения на эмиттерных переходах. При прохождении полуволны положительной полярности, происходит открытие п-р-п – транзистора, аналогично, прохождение отрицательной полуволны вызывает открытие р-п-р – транзистора.

Мощный эмиттерный повторитель имеет расчет КПД (К = Пи/4 х УВЫХК), где Увых – амплитуда выходного сигнала; УК – напряжение на коллекторном переходе.

Из формулы видно, что К возрастает при увеличении амплитуды УВЫХ и становится максимальным, при УВЫХ = УК (К = Пи/4 = 0,785).

Отсюда видно, что эмиттерный повторитель на комплементарной схеме обладает значительно более высоким КПД, чем обычный повторитель.

Свойством этой схемы являются большие (переходные) нелинейные искажения. Они проявляют себя в большей степени, чем меньше входное напряжение (УВХ).

Расчет двухтактного усилителя

Так как нам нужен повторитель эмиттерный для усиления по мощности, то исходными данными, чтобы сделать расчет эмиттерного повторителя, будут: сопротивление нагрузки (РН), мощность нагрузки (ПН). Чтобы уменьшить рассогласованность выходного и входного сигнала, напряжение питания должно быть выше на 5 В от амплитуды выходного напряжения.

Формулы для расчета усилительного каскада:

Уменьшение искажений выходного напряжения

Двухтактный эмиттерный повторитель, принцип работы которого описан выше, можно еще улучшить, уменьшив в его схеме переходные искажения сигнала на выходе.

Чтобы уменьшить искажения напряжения на выходе каскада можно подавать на базы транзисторов напряжения, смещающие выходную характеристику.

Для смещения используются диоды либо транзисторы, подающие сигнал на базы рабочих транзисторов повторителя.

Схема с использованием диодов

На эмиттерных переходах транзисторов Т1 и Т2 появляется смещение за счет диодов Д1 и Д2, подключенных между базами транзисторов. При входном напряжении, равном нулю, транзисторы активны. Когда полярность напряжения положительна, транзистор Т2 запирается, а при отрицательной полярности напряжения запирается транзистор Т1. При нулевом входном сигнале один из транзисторов является активным, таким образом, схема с диодами дает характеристику выходного сигнала, очень близкую к линейной. Вместо диодов, можно использовать транзисторы с шунтированными коллекторными переходами.

Усилитель мощности с дополнительными эмиттерными повторителями

Еще одна схема, которая дает уменьшить искажение выходного сигнала, на входе которой включены два транзистора.

В этой схеме на входе размещены два повторителя на транзисторе, которые создают смещение напряжения для эмиттерных переходов двух выходных транзисторов. Существенным плюсом такого включения будет увеличенное сопротивление на входе каскада. Эмиттерные токи входных и базовые токи выходных транзисторов, задают два первых резистора. Вторые два резистора входят в цепь обратной связи для выходных транзисторов.

Этот вариант подключения является буферным усилителем с единичным усилением по напряжению.

Составные транзисторы

Сейчас выпускаются транзисторы в виде отдельного каскада из двух транзисторов в одном корпусе (схема Дарлингтона). Они используются в микросхемах в усилителях на дискретных составляющих. При замене обычного транзистора на составной происходит увеличение входного и уменьшение выходного сопротивлений схемы.

Расчёт выходного усилительного каскада – эмиттерного повторителя

Электрическая схема эмиттерного повторителя представлена на рисунке 5.

Рисунок 5 – Электрическая схема принципиальная эмиттерного повторителя

Расчет эмиттерного повторителя по постоянному току

Выберем кремниевый n-p-n транзистор КТ315Г со следующими параметрами:

– статический коэффициент передачи тока в схеме с общим эмиттером в=50;

– максимальное постоянное напряжение коллектор-эмиттер UКЭmax=35 В;

– максимальный постоянный ток коллектора IKmax=100 м А;

– максимальная постоянная рассеиваемая мощность коллектора PКmax=150 мВт.

Для того, чтобы выходной сигнал имел возможно больший размах, следует выбрать напряжение покоя на эмиттере посередине между землёй и питанием. В схеме эмиттерного повторителя рабочая точка задаётся резистором, соединяющим базу транзистора с источником питания .

Для передачи максимальной мощности выбираем

Поскольку эмиттерный повторитель работает с максимальным уровнем выходного сигнала, то необходимо выбрать потенциал эмиттера в рабочей точке равным половине напряжения питания:

С помощью базового резистора смещения в базу транзистора подаётся базовый ток , достаточный для поддержания требуемого тока эмиттера:

Ток задаётся сопротивлением , включенным между базой транзистора и источником питания . Значение определим по закону Ома:

Номинальное значение напряжения источника питания ЕК =18 В.

Несмотря на то, что для задания рабочей точки выбран простейший способ, он все же обладает свойством саморегулировки, компенсирующей разброс значений коэффициента в и температурные изменения тока транзистора. Это происходит следующим образом. При увеличении тока эмиттера вследствие указанных выше факторов возрастает напряжение на эмиттере транзистора UБЭП, что приводит к уменьшению напряжения на сопротивлении Rб и, следовательно, к уменьшению тока IбП. Транзистор подзапирается и напряжение на эмиттере транзистора уменьшается почти до исходного значения.

Расчет эмиттерного повторителя по переменному току

Cоставим эквивалентную схему эмиттерного повторителя по переменному току для области средних частот (рисунок 6).

Рисунок 6 – Эквивалентная схема эмиттерного повторителя по переменному току для области средних частот.

Рассчитаем входное сопротивление RВХ эмиттерного повторителя. Из эквивалентной схемы, изображённой на рисунке 6 следует, что сопротивление усилительного каскада равно: RВХ= Rб||rВХТ, где rВХТ – входное сопротивление транзистора, которое равно:

Рассчитаем входное сопротивление RВЫХ эмиттерного повторителя. Из эквивалентной схемы (рис.6) следует, что сопротивление усилительного каскада равно: RВЫХ= RЭ||rЭ

Рассчитаем коэффициент усиления по напряжению:

Эмиттерный повторитель

Эмиттерный повторитель – это схема с Общим Коллектором (ОК). Вроде бы название должно говорить само за себя, а вот нет. Так что, не забывайте об этом 😉

Схема эмиттерного повторителя

Давайте разберемся, что значит словосочетание “эмиттерный повторитель”? Если досконально разобрать эту фразу, то она означает, что на эмиттере что-то должно повторяться.

Упрощенная схема эмиттерного повторителя выглядит вот так:

На первый взгляд вроде бы схема как схема, но она обладает 4 важными свойствами:

1) Напряжение Uвых меньше Uвх на каких-то 0,6-0,7 Вольт (падение напряжения на базе-эмиттере)

2)Uвых в точности повторяет по форме и фазе Uвх

3) Сопротивление со стороны входа (входное сопротивление) большое

4) Сопротивление со стороны выхода (выходное сопротивление) маленькое

Входное и выходное сопротивление эмиттерного повторителя

Раз уж упомянули про входное и выходное сопротивление, то как же его рассчитать? Оказывается, сопротивление со стороны входа (входное сопротивление) рассчитывается очень просто:

где Rэ – это сопротивление резистора в цепи эмиттера

Также не стоит забывать, что когда мы цепляем нагрузку, то меняется и входное сопротивление, так как параллельно Rэ мы цепляем какое-то сопротивление, являющееся нагрузкой.

Эмиттерный повторитель уменьшает выходное сопротивление источника сигнала в β раз. Допустим, если у нас выходное сопротивление источника сигнала равняется 500 Ом, а β в схеме эмиттерного повторителя равняется 100, то на выходе эмиттерного повторителя мы уже получим источник сигнала с выходным сопротивлением в 5 Ом.

Но опять же, раз выходной сигнал у нас стает меньше на 0,6-0,7 Вольт, получается, что он даже меньше входного!?

Значит схема не усиливает напряжение, а даже его чуток ослабляет). Вот тебе и транзистор – усилитель сигналов)) Но-но! Рано огорчаться. Так как входное сопротивление такой схемы большое, значит, мы можем нагрузить на вход эмиттерного повторителя какой-либо сигнал, не боясь, что он просядет, а на выход мы можем подключить низкоомную нагрузку. В этом и заключается вся прелесть 😉

Читайте также:  Сигнализация с мобильным телефоном и ключом-таблеткой

Так, а теперь давайте представим, что было бы, если бы мы напрямую, без эмиттерного повторителя, подали сигнал в низкоомную нагрузку с генератора сигнала с высоким выходным сопротивлением? Да сигнал у нас просел бы в несколько раз! Чтобы это понять, читаем статью про входное и выходное сопротивление.

Для чего нужна эта схема

Значит, эмиттерный повторитель в электронике выполняет роль миротворца между источником сигнала с высоким выходным сопротивлением и низкоомной нагрузкой. Еще более простыми словами: эмиттерный повторитель понижает выходное сопротивление источника сигнала. В этом и заключается его роль в электронике 😉

Также запомните простое правило: эмиттерный повторитель дает усиление по току, а не по напряжению. А так как повышается сила тока, следовательно, и мощность, отдаваемая в нагрузку, тоже будет больше, так как P=IU , где P – это мощность, I – сила тока, U – напряжение.

Расчет эмиттерного повторителя

Наше техническое задание звучит так:

Ра НННННннванвыавпНннаНаНННГггываYfit YFutYfsdfYYYYyhfsdfYf Рассчитать схему эмиттерного повторителя для звукового сигнала. +Uпит=12 Вольт.

1) Так как звук у нас представляет колебание как в одну, так и в другую сторону, следовательно, наш сигнал должен колебаться как в положительную, так и в отрицательную сторону. Поэтому, чтобы сигнал имел как можно больший размах, мы должны сделать так, чтобы он находился в середине активного режима. Так как мы сигнал будем снимать с эмиттера, следовательно, в статическом режиме (то есть когда НЕ подаем сигнал на вход нашего эмиттерного повторителя) у нас напряжение на эмиттере должно быть равно половине напряжения питания. Или буквами:

2) Чтобы зря не рассеивать на транзисторе тепло, оптимальный ток покоя берут в 1 мА. Это значит, что по цепи +12В—–> коллектор——-> эмиттер—–>Rэ —–>земля должен течь ток с силой в 1 мА. Здесь мы не учитываем крохотный ток базы. Как этого добиться? Вспоминаем закон Ома для участка цепи и высчитываем номинал резистора:

Rэ=6 В/0,001 А=6 000 Ом = 6 КилоОм.

Берем ближайший из ряда на 6,2 КилоОма

3) Какая же сила тока должна течь через базу-эмиттер, чтобы обеспечить ток покоя в 1 мА? Так как в нашем примере ток эмиттера Iэ почти равен току коллектора Iк (если, конечно, не учитывать крохотный базовый ток) то вспоминаем формулу зависимости тока базы от тока коллектора:

Я взял транзистор КТ817Б, замерял его коэффициент усиления по току , то есть β, и падение напряжения на переходе база-эмиттер с помощью транзистор-тестера:

Итого, β (hFE на транзистор-тестере) равно около 300, падение напряжения 0,55 Вольт.

Следовательно, Iб = Iк / β = 1/300 = 3,3 мкА

4)Высчитываем ток делителя напряжения, который образуют два резистора: Rб и Rэ. Его берут в основном в 10 раз больше, чем ток базы:

5)Считаем напряжение на базе. Оно равняется:

6)Теперь для простоты расчета чертим небольшую схемку:

Из закона Ома получаем следующие расчеты:

Rбэ = 6,55 В / 33 мкА = 200 КилоОм. Берем ближайший из ряда на 200 КилоОм.

Так как сумма падений напряжений на резисторах равняется Uпит, следовательно, на Rб будет напряжение 12-6,55 = 5,45 Вольта.

Rб = 5,45 В / 33 мкА = 165 КилоОм. Берем ближайший из ряда на 150 КилоОм.

7)Конденсаторы в схеме нам служат для того, чтобы убрать постоянную составляющую, то есть постоянный ток, который присутствует на базе и эмиттере. Нам ведь нужен только переменный сигнал без примеси постоянного тока, так ведь? Для выбора конденсаторов правило простое: постоянная времени RС-цепи должна быть больше периода передаваемого сигнала самой низкой частоты примерно в 100 раз.

Не будем сейчас говорить от дифференциальных и интегральных цепях (блин, голова заболела от одного их упоминания ), а просто разберемся, как высчитывается постоянная времени RC- цепи. Назовем ее t . Вычисляется она по формуле:

Входное сопротивление эмиттерного повторителя высчитывается по формуле:

Rвх = Rэ х β = 6000 х 300 = 1,8 МегаОм.

Для звукового сигнала самая низкая частота – это 20 Герц (предел слуха человека средних лет), находим период и значение конденсатора:

1,8 х 10 6 х С1 = 5

С1= 5 / 1,8 х 10 6 = 2,7 мкФ. То есть берем конденсатор от 2,7 мкФ. Думаю, 10 мкФ будет самое оно.

С2 – это вход какого-либо следующего каскада, следовательно, он рассчитывается аналогично. В нашем примере возьмем его на 100 мкФ, так как чем низкоомнее нагрузка, тем большая емкость должна быть на выходе каскада.

Следовательно, вся наша схема будет с такими параметрами:

Собираем схему в реале и проверяем в деле:

Итак, входной сигнал у нас будет красным цветом, выходной – желтым. Подаем сигнал с генератора частоты амплитудой в 0,5 Вольт. Не цепляем пока никакую нагрузку и смотрим, что у нас получилось:

Как вы видите, у нас получилось два абсолютно одинаковых сигнала, которые даже по фазе повторяют друг друга. Короче говоря, что на входе, то и на выходе.

Но фишка немного в другом. Давайте я сейчас нагружу входной сигнал резистором в 500 Ом. Область, выделенную штрихпунктирной линией мы пока что НЕ рассматриваем.

Какое напряжение Uвх у нас сразу станет? Все зависит от выходного сопротивление генератора. Так как я подаю сигнал через делитель напряжения, сделанный на потенциометре, следовательно, у меня красный сигнал очень сильно просядет, что мы и видим на осциллограмме ниже. На желтый пока что не обращайте внимание.

Но что будет, если я нагружу этот сигнал тем же самым резистором в 500 Ом через эмиттерный повторитель? Ставим резистор на выход эмиттерного повторителя:

Входной сигнал даже не просел, даже тогда, когда мы его нагрузили через эмиттерный повторитель ;-).

А где же та самая обещанная просадка напряжения в 0,6-0,7 Вольт? Если бы мы подавали сигнал сразу на базу, без делителя напряжения на резисторах Rб и Rбэ , то мы увидели бы просадку.

Недостатки эмиттерного повторителя

Есть, конечно, большой минус эмиттерного повторителя. Заключается он в том, что сигнал на выходе тупо срезается при отрицательной полуволне при сильной низкоомной нагрузке. Поставив резистор в 100 Ом, у нас получается вот такой ералаш:

Но почему так произошло?

Не хочу приводить дотошные формулы и выводить их, просто скажу, что из-за слишком низкоомной нагрузки, у нас получается так, что на эмиттере напряжение стает больше, чем на базе, а следовательно, транзистор тупо “затыкается”, так как в этом случае PN-переход оказывается включен в обратном направлении.

Как же с этим бороться?

Можно уменьшить Rэ , но тогда и ток покоя будет больше, что приведет опять же к расточительству электроэнергии и нагреву транзистора.

Другой вариант, взять так называемый транзистор Дарлингтона, который имеет очень большое входное сопротивление порядка 10 Мегаом и обладает большим коэффициентом усиления β . Все дело в том, что такой транзистор состоит из двух транзисторов, коэффициент усиления которого будет равен:

β1 – коэффициент усиления первого транзистора

β2 – коэффициент усиления второго транзистора

Вот так выглядит транзистор Дарлингтона:

Заключение

Также в ретроусилителях мощности уже не парятся и используют эмиттерные повторители в так называемом режиме работы класса B, где усиливается по току только одна полуволна сигнала каждым транзистором. А если честно, лучше вообще забить на этот эмиттерный повторитель, так как есть радиоэлементы, которые не надо рассчитывать и которые выдают усиление во много раз превосходящее, чем у эмиттерного повторителя и без всяких заморочек.

Основы электроники. Эмиттерный повторитель.

Продолжается сага о биполярных транзисторах, и сегодня будет вторая часть из трех В этой статье мы обсудим такую замечательную вещь, как эмиттерный повторитель. Тема эта довольно важна для понимания принципа работы транзистора, поэтому постараюсь все описать довольно подробно и главное понятно)

В общем, начинаем разбираться, и начнем мы, собственно, со схемы:

Принципиальная схема эмиттерного повторителя

Выходной сигнал тут снимается с эмиттера, а чему он равен? Правильно, напряжение на базе минус 0.6 В (прямое напряжение диода база – эмиттер). Вот и получается, что сигнал на выходе повторяет входной сигнал за той лишь разницей, что амплитуда его меньше на 0.6 В. Таким образом, эмиттерный повторитель полностью оправдывает свое название;)

Все это, конечно, замечательно, но может возникнуть резонный вопрос – зачем все эти пляски? Устройство то получилось бесполезное – что на вход подали, то с выхода и сняли…

Думаю всем понятно, что смысл в этом все же есть, так что давайте разбираться, в чем тут фишка. Но сначала отвлечемся ненадолго и обсудим один важный для понимания электроники в целом момент.

Импеданс нагрузки и источника сигнала.

Строго говоря, сопротивление может быть активным и реактивным (комплексным), но все-таки, сегодня разговор не об этом, поэтому углубляться не будем, просто запомним, что импеданс – это полное сопротивление. А тонкости мы обязательно рассмотрим как-нибудь в отдельной статье.

Итак, нагрузка, источник сигнала и их импеданс!

Пусть у нас есть источник напряжения и к нему подключена нагрузка. Источник не идеальный (а вполне реальный), поэтому его внутреннее сопротивление не равно 0. И в итоге мы получаем делитель напряжения (его составляют резистор нагрузки и внутренне сопротивление источника), что приводит к тому, что на полезной нагрузке будет напряжение меньшее, чем выдает источник. Естественно, это плохо и с этим надо бороться. А как? Ну, тут только один вариант – внутреннее сопротивление источника должно быть намного меньше, чем сопротивление нагрузки – R вн R н. В случае источника тока, картинка прямо противоположная, то есть R вн>> R н.

В электрических схемах в качестве источника сигнала может выступать, например, выход усилительного каскада (его сопротивление R вых), а в качестве нагрузки, например, другой каскад, ну или непосредственно нагрузка (с сопротивлением R вх). Вспоминаем выводы, которые мы получили для примера с источником питания и нагрузкой, и получаем, что R вх должно быть намного больше, чем R вых. А, если обобщить, то получаем Z вых Z вх (символом Z обозначается величина импеданса).

А теперь вспоминаем, что мы вообще то обсуждаем тут и возвращаемся к схеме эмиттерного повторителя

Так вот важнейшее свойство эмиттерного повторителя заключается в том, что его входной импеданс намного больше, чем выходной. И это его свойство невероятно полезно. Смотрите сами – пусть у нас есть источник напряжения и нагрузка. Сопротивление нагрузки должно быть значительно больше выходного сопротивления источника. А если источник подключить к нагрузке через эмиттерный повторитель, то источник сможет работать на нагрузку с меньшим значением импеданса. То есть, если у нас R нагрузки( R вх) примерно равно выходному сопротивлению источника ( R вых), например, то потеря амплитуды сигнала будет довольно-таки значительной (из-за делителя напряжения, состоящего из R вых и R вх). А если мы включим в цепь эмиттерный повторитель, то эти потери будут значительно уменьшены. Вот так вот )

А, если говорить совсем просто, то эмиттерный повторитель обеспечивает увеличение тока, и, соответственно, мощности, хоть напряжение и не меняется. Теперь-то, надеюсь, ни у кого не возникает сомнений в полезности этого устройства =)

Вот мы и разобрались с принципом работы эмиттерного повторителя. Но на этом не заканчиваем, давайте-ка посмотрим практические схемы его использования. И в качестве примера хочу показать вам, как использовать повторитель для стабилизации напряжения.

Тут придется второй раз отвлечься от основной темы и немного уделить внимания еще одному полезнейшему элементу – а именно стабилитрону.

Стабилитрон.

Стабилитрон, кстати, также называют зенеровским диодом. Его вольт-амперная характеристика похожа на характеристику обычного диода

Но вот используется он буквально противоположно. Посмотрите на схему:

Обратите внимание на то, что катод подключен к плюсу(!), то есть рабочей областью для зенеровского диода является обратная ветвь ВАХ. Пусть на входе имеется нестабильный источник, тогда питающий ток меняется в некоторых пределах, что вообще-то не очень хорошо. При использовании стабилитрона достаточно большим изменениям входного тока соответствуют очень небольшое изменение выходного напряжения. Это следует из вольт-амперной характеристики – видно, что на обратной ветви, при определенном значении напряжения, характеристика круто уходит вниз. То есть при разных значениях тока (в довольно-таки широких пределах) напряжение на стабилитроне практически не изменяется, что нам собственно, и требуется ) С этим вроде бы все понятно.

У этого способа стабилизации напряжения есть ряд минусов. Во-первых, мы не можем отрегулировать выходное напряжение и установить его на определенное значение, ведь оно определяется характеристикой конкретного стабилитрона. Ну а во-вторых, все-таки стабилитрон не идеален, и в связи с этим пульсации входного напряжения сглаживаются не всегда хорошо. А если через нагрузку ток не течет, то вся мощность должна рассеяться на стабилитроне, то есть при проектировании схем нужно подыскивать стабилитрон с большой мощностью рассеяния. И тут мы возвращаемся к главной теме нашей беседы, то есть к эмиттерному повторителю, который может значительно улучшить схему стабилизации.

Стабилитрон работает так же, как и в предыдущей схеме, то есть стабилизирует напряжение на базе транзистора. Так как это повторитель, то на выходе мы также получаем стабилизированное значение напряжения. А польза такой схемы заключается в том, что теперь ток, протекающий через стабилитрон, не зависит от тока нагрузки (действительно через стабилитрон течет малый ток базы, который потом усиливается транзистором). Ток меньше, а вместе с ним, становится меньше и мощность, рассеиваемая на стабилитроне.

А теперь давайте, вспомним, что мы уже изучили в курсе «Основы электроники» и прикинем, как бы еще улучшить эту схему. Было бы неплохо (даже очень хорошо ) снизить пульсации тока в стабилитроне. А как можно отфильтровать пульсации? Конечно, же фильтром! Фильтром низких частот (про фильтры уже было раньше – вот тут) =) Добавляем его в схему:

Вот так и получаются сложные принципиальные схемы – там что-нибудь добавить, тут что-нибудь улучшить, а здесь что-нибудь отфильтровать

Про биполярные транзисторы вообще можно разговаривать практически бесконечно, но читать это потом будет нереально, так, что, пожалуй, на этом сегодня и остановимся. Многое еще надо рассмотреть, так что до скорого, до новых статей! )

Ссылка на основную публикацию