Кабельный тестер своими руками – схема

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Схема тестера сетевого кабеля “витая пара”.

Схема тестера сетевого кабеля “витая пара”.

Схема тестера сетевого кабеля витая пара

Если вам приходится сталкиваться с прокладкой компьютерных сетевых кабелей, вам непременно будет полезно иметь в своем арсенале инструмента и приспособлений подобное устройство, с помощью которого без труда можно определить целостность линии и правильность заделки жил кабеля в разъемы и розетки. Данное устройство способно определять неисправности в кабелях двух видов соединений:

● 568А – это заделка разъемов сетевых кабелей для соединения типа “Компьютер – компьютер”;
● 568В – это заделка разъемов сетевых кабелей для соединения типа “Компьютер – концентратор”.

Имейте в виду, что чередование жил в разъемах этих типов соединений не одинаково.

Питается схема от одной батареи типа “Крона” с напряжением 9 Вольт, ток потребления в режиме сканирования в пределах 20 мА.

Принципиальная схема тестера сетевых кабелей изображена ниже:

Как видите, устройство тестера состоит из двух печатных плат:

● Первая плата (слева) – представляет собой задающий генератор, собранный на таймере NE555 (отечественный аналог КР1006ВИ1), десятичного счетчика с дешифратором – это микросхема CD4017 (отечественный аналог К561ИЕ8), линейки светодиодов из 8-ми штук, и двух выходных розеток типа TJ2-8P8C.
Частоту задающего генератора можно отрегулировать подстроечным резистором R3 в диапазоне от 15 до 25 Гц. Назначение выходных розеток следующее:
– XP1 – для тестирования кабелей с типом заделки 568B;
– XP2 – для тестирования кабелей с типом заделки 568А.
Выключатель SW1 служит для включения/выключения тестера.

Микросхема 4017_внешний вид

Ниже приведена таблица состояния микросхемы CD4017:

● Вторая плата (справа) – это плата “Заглушка”. Она имеет входной разъем XP3, и линейку из 8-ми светодиодов.

Проверка кабеля осуществляется следующим образом: на один конец кабеля подключается плата “Заглушка”, на другой плата генератора. В плату генератора кабель подключается в зависимости от того, какой тип заделки выполнен на данном кабеле (568А, или 568В). Включается питание тестера, и на нем начинают последовательно мигать светодиоды. Так же начинают мигать светодиоды, расположенные на плате “Заглушке”. Одинаковое чередование зажигания светодиодов обеих плат говорит об исправности и правильности заделки жил кабеля. Если на плате “Заглушке” какой-либо светодиод не моргает – это свидетельствует тому, что в кабеле оборвана жила, или произведена некачественная опрессовка коннектора.

Далее в таблице указан перечень элементов, необходимых для сборки тестера:

Печатные платы тестера изготовлены из двухстороннего фольгированного стеклотекстолита. Ниже показана плата генератора и счетчика:

Ее размеры составляют 52 х 50 мм. Расположение элементов на этой плате показано на следующем рисунке:

Печатная плата “Заглушка” – смотри далее (размер 38 х 27 мм):

Расположение элементов на плате “Заглушке”:

Внешний вид плат тестера с сборе:

28.10.2016
Файл для скачивания обновлен. На плату нанесена маркировка элементов, толщина дорожек увеличена на сколько это возможно. Внешний вид платы формата LAY6 выглядит так:

Вторая сторона печатной платы LAN-тестера:

По желанию можно приобрести готовые пластиковые коробки для плат тестера, например, в Мастеркит, их модели имеют название “BOX-M22” и “BOX-M1”. Вам останется только самостоятельно вырезать проемы для сетевых розеток и выключателя питания. Диаметр сверлений отверстий для светодиодов – 3 мм.

Вы можете скачать схему тестера, а так же печатные платы в формате LAY по прямой ссылке с нашего сайта. Размер файла – 0,32 Mb.


Начну с того, что данная статья — опыт повторения устройства, впервые опубликованного на ресурсе Хабрахабр.

(К сожалению, мне не удалось связаться с автором устройства. Были и вопросы, и пожелания, и вообще хотелось помочь дальнейшему развитию проекта. Я честно прошел регистрацию, ответил на кучу разных вопросов и все равно, мой статус — READ ONLY 🙁 Весьма странное отношение со стороны администрации ресурса. Ну да ладно, учитывая, тот факт, что разработчик любезно предоставил все информацию по тестеру (включая исходники), он не будет в большой обиде на мой опус).

Итак, автор все очень подробно и дотошно описал. Так, сказать, бери и делай. Но, печатная плата сделана в программе DipTrace , вроде как проблема и не вселенского масштаба, но, как правило, все DIY-разработчики (по крайне мере, на постсоветском пространстве) стараются использовать Sprintlayout.

Кстати, у автора в схеме есть небольшая опечатка, которая меня немного сбила с толку при проверке…
Вот исправленная схема:

Итак, список необходимых для повторения деталей:

Atmega16 (DIP) + колодка
Кварц 8Mhz
стабилизатор на 5В 78M05 (smd)
супрессор 1,5КЕ6,8СА — 8шт
HD44780-совм. дисплей (WH-1604A-YYH-CT#) — 4 строчный
стабилитрон 5.1В — 1шт
разьем LAN — 2шт
ОПЦИОНАЛЬНО: разъем для подключения батарейки «Крона»
колодка 2х5 + ответная часть
колодка 2х10 + ответная часть
конденсатор 22pF — 2шт
конденсатор 100n — 1шт
резистор 1М (0,25Вт) -8шт
(резисторы smd все типоразмера 1206)
8.2kOm (smd) — 9шт
100 Om (smd) — 1шт
1k (smd) — 1шт
2k (smd) — 1шт
3k (smd) — 1шт
5.1k (smd) — 1шт
10k (smd) — 3шт
15k (smd) — 1шт
22k (smd) — 1шт
51k (smd) — 1шт
подстроечный резистор 10кОм
пластиковый корпус 125х70х35

Слегка подкорректированная печатная плата в программе Sprintlayout:

Процесс ЛУТ-а, травления и запайки не представляет ничего нового и интересного:

Вид сверху:

Теперь остановимся на прошивке. Прошивка фьюзов, лично для меня, ОЧЕНЬ туманное дело.
У автора в командной строке для avreal32 указанно следующее:

Ага, засада. Имеющийся у меня программатор USBTinyISP программой AVREAL32 не поддерживается 🙁 Обидно. Ладно, попробуем пересчитать фьюзы…
Тут хороший калькулятор фьюзов.
Получаем:
.

Читайте также:  Электронный штангенциркуль с глубиномером

Прошивая первый раз, я не учел необходимость отключения JTAG 🙁 и после прошивки получил следующее сообщение на экране:

Ну, вроде как все хорошо… Разобрались.
Наша строчка для запуска прошивки должна выглядеть так:

Прошиваем микроконтроллер с помощью AVRDUDE и программатора USBTinyISP :

После «правильной» прошивки, запускаем устройство и радостно наблюдаем следующий текст на экране:

На скорую руку делаем «подобие» ответной части (очень уж хотелось потестировать устройство):

Результаты тестирования:
Подключаем обычный патч-корд

Кусок обкусанного патч-корда с 2-мя парами закороченных жил:

Все, очень даже неплохо. Мысленно благодарю автора (некий Potok, он же Иванов Георгий Александрович из города Астрахань)!!

Для питания, я использовал два последовательно соединенных аккумулятора от мобильных телефонов. Сначала планировал сделать разъем USB для их подзарядки… Но потом, отказался от этой идеи. Т.е., в случае необходимости зарядки, придется разбирать корпус и по отдельности заряжать аккумуляторы 🙁 Надеюсь, что это нужно будет делать КРАЙНЕ-КРАЙНЕ редко 🙂

А вот тут самое длительное дело: размещение всего хозяйства в корпус:

Внешний вид:

На фото уже «нормально» сделанная заглушка. Я ее прикрепил на шнурочке (чтобы не потерялась).

еще ракурс:

Приятный момент. Судя по чтению комментариев к статье автора (я же могу только читать :(( ), он озадачился написанием новой прошивки, с новыми возможностями. Так, что разъем на плате под ISP — очень даже важен. Поживем — увидим!

Традиционно, все необходимое, для повторения сложено в один архив. Забирайте тут .
Исходный материал автора сложен в каталог: . _Original version

Кабельный тестер своими руками – схема

Микроконтроллерный тестер UTP в спичечном коробке.

Автор: Настя
Опубликовано 01.01.1970

Дорогой РадиоКот, поздравляю тебя с 3-х летием.
Желаю тебе процветания, здоровья и долгих лет жизни.
Считается, что самые ценные подарки в маленьких коробочках.
И я тебе дарю маленькую коробочку, но не простую, а с сюрпризом.

Для нас не будет открытием, что каждый посетитель сайта «РадиоКот» имеет компьютер и выход в интернет. Большая часть компьютеров подключена к интернету через интерфейс типа Ethernet. А кто не имеет выхода в интернет, так или иначе может быть включён в локальные сети через интерфейс Ethernet. И количество таких соединений с каждым днём растет.
Соединение через Ethernet предполагает электрическое соединение через кабель UTP, который иначе называют витой парой (четыре свитых пары проводников). Кабель заделывается в типовую розетку или оконцовывается вилкой типа RJ-45. Существуют определенные стандарты нумерации проводников по цветам в разъеме. Это связано электрическими и физическими характеристиками UTP-кабеля (например, количество свивок на метр в каждой паре различен). Эти «сложности» я не буду здесь рассматривать. На рисунке приведена раскладка по цветам.

Существует две разновидности заделки кабеля:

568В – компьютер-концентратор (прямой кабель) и
568А – компьютер-компьютер (перекрестный кабель).

Для тестирования таких соединений существует большое множество устройств разного функционального наполнения и разного ценового диапазона. Профессиональные тестеры позволяют измерить длину кабеля, затухание сигнала в нём и т.п. Но как показывает практика, дешевле собрать собственное устройство, которого по сути достаточно для тестирования небольших сетей.
В Интернете много схем тестеров UTP. Как правило, они представляют связку генератора и двоично-десятичного счетчика (жёсткая логика). Я пыталась сделать нечто подобное, но остановилась на этапе разводки печатной платы. Ни один из моих вариантов рисунка платы мне не нравился. Да и конструкция не выглядела убедительной и удобной. В итоге я приняла решение сделать тестер на микроконтроллере, т.к. это будет наиболее оптимальная конструкция с точки зрения схемотехники. И этим тестером я и мои друзья пользуются почти год.

Данный тестер позволяет проверять правильность последовательности заделки проводников, обрыв проводников, короткие замыкания. Это минимальный и достаточный набор функций, который позволит наверняка сделать вывод об исправности сетевого соединения.
Итак, это два бескорпусных устройства. Собственно сам тестер и «заглушка». Заглушка используется для тестирования кабеля, если концы кабеля, например, в разных комнатах. Микроконтроллер PIC16F84A запитывается напрямую через нормально разомкнутую тактовую кнопку. Использована дешевая алкалиновая батарейка типа «Космос» напряжением 12В. Такие батарейки используются в брелках автомобильных сигнализаций. У Вас, как и у меня в свое время, возникли сомнения по поводу правильности питания. Я согласна с этим, но никаких критических ситуаций за все время эксплуатации не возникало. Работает по принципу – батарейку впаяла и забыла. Можно использовать более современные и более дешевые контроллеры с внутренним тактированием, но этот контроллер мне было жалко выкидывать, т.к. в нём я «убила» все линии порта А во время других разработок. Это питание работает и с другими микроконтроллерами. Розеточные разъемы типовые, демонтированные из Б/У розеток.

Схема тестера предопределена рисунком печатной платы, т.к. изначально рисовалась плата, а затем составлялась программа под имеющиеся электрические соединения. Строго говоря, это «бегущий огонь» – программа для начинающих, которая последовательно изменяет логический уровень, ножка за ножкой по кругу.

Самодельный lan тестер для проверки кабеля витая пара
со светодиодной индикацией

В продаже представлено множество lan тестеров для проверки сетевого кабеля витая пара разного уровня сложности и ценового диапазона от нескольких сотен рублей до десятков тысяч. Такие профессиональные lan тестеры могут позволить себе только фирмы, занимающиеся прокладкой и обслуживанием кабельных сетей.

Если проверять кабель витая пара приходится редко, то можно проверку выполнить стрелочным тестером или мультиметром. Если это работу приходится выполнять часто, а возможности купить фирменный lan тестер кабеля витых пар нет, то целесообразно его сделать своими руками.

Читайте также:  Щуп для осциллографа с делителем своими руками – схема

Достоинством представленного lan тестера для проверки сетевого кабеля витых пар со светодиодной индикацией является простота и высокая надежность (отсутствуют активные элементы), доступность для изготовления своими руками из подручных материалов.

Конструкция lan тестера представляет собой два блока, один – пассивная заглушка, сделанная из розетки RJ-45, во втором блоке размещено 4 светодиода, переключатель, резистор, гнездо RJ-45 для подключения кабеля витых пар и компьютерная батарейка.

Блок индикации работает следующим образом. При подключении коннекторов RJ-45 кабеля витых пар к заглушке и основному блоку и установки переключателя в одно из положений 1-4, ток с положительного вывода элемента питания проходит через резистор R5, далее через один из проводников витой пары, далее через один из резисторов R1-R4, через второй провод пары, светодиод и возвращается на отрицательный вывод G1.

Если при переключении П1 все диоды светят с одинаковой яркостью, значит кабель исправен. Более яркое свечение одного из диодов – короткое замыкание пары. При свечении сразу двух светодиодов – к.з. между соседними парами. Отсутствие свечения – обрыв одного из проводов витой пары.

Светодиодный лан тестер позволяет проверить кабель витых пар, подключенный к активному оборудованию (свичу, хабу, роутеру, сетевой карте). При этом не имеет значение, включено оборудование или нет. Достаточно вставить вилку RJ-45 в светодиодный блок lan тестера витых пар. В зависимости от схемы подключения кабеля витых пар (могут быть подключены все четыре пары или только две), будут светится два или четыре светодиода.

При переключении переключателя яркость свечения светодиодов будет меняться. Такая проверка безопасна для активного оборудования, так как ток будет ограничен R5. Таким образом тестером можно успешно тестировать кабель витых пар без использования заглушки и заодно проверить качество соединения вилки RJ-45 с активным оборудованием.

Можно переключатель П1 и не устанавливать, а запаять провода напрямую. Но тогда будет ограничение по возможности тестирования в случае короткого замыкания соседних пар, хотя это бывает редко и, как правило, в случае небрежной подготовки проводов перед обжимом в разъеме RJ-45. Зеленая пара перехлестывает другие, и легко продавливается изоляция со всеми вытекающими последствиями.

Для корпуса основного блока lan тестера использован пластмассовый разборный детский кубик, в который смонтированы все детали. Батарейка CR2032 на 3 вольта от компьютера установлена в контейнер, выпаянный из старой материнской платы. Розетка для блока светодиодной индикации взята из неисправной сетевой карты, вырезана лобзиком вместе с куском печатной платы и закреплена к корпусу винтами. Светодиоды и резисторы любого типа.

Блок-заглушка lan тестера изготовлена из стандартной настенной розетки RJ-45 в гребенки которой запрессованы четыре резистора R1-R4 номиналом 400 Ом. Они выполняют функцию ограничения тока и одновременно обеспечивают индикацию в случае короткого замыкания в витой паре, при наличии которого соответствующий светодиод светит ярче.

Надписи и цветовая схема обжатия RJ-45 выполнены на цветном принтере и приклеены на бока блоков lan тестера витых пар клеем, для долговечности и эстетического внешнего вида сверху заклеены скотчем.

ТЕСТЕР КАБЕЛЬНЫХ СЕТЕЙ

При монтаже и тем более при эксплуатации компьютерной сети, часто возникает необходимость проверки правильности обжима кабеля, целостности и качества сегмента сети. Для таких целей конечно хорошо иметь профессиональный прибор:

Используемый для примера кабельный тестер NETcat Micro NC-100 предназначен для тестирования витой пары и коаксиальных кабелей. Полностью цифровая технология проверки целостности цепи и определения исправности кабельных пар делает работу прибора быстрой, легкой и точной. А для управления прибором используются всего 4 функциональные клавиши. Результаты измерений отображаются на дисплее LCD. Использование тональных сигналов позволяет легко и удобно производить трассировку кабелей категории 5, 6 и 7, а также осуществлять поиск нужной пары в пучке жил.

Функциональные особенности тестера:

– Тестирование экранированной (STP) и неэкранированной (UTP) витой пары, а также коаксиальных кабелей;
– Определение обрывов, коротких замыканий, перепутанных пар и жил, об ратной полярности проводов;
– Выбор одного из трех тональных сигналов для трассировки кабельной линии и определения мест повреждений;
– Предупреждение о наличии опасного напряжения на линии;
– Интерфейсы: RJ12 (телефонный), RJ45 (сетевой) и тип F (коаксиальный).

Всё это конечно хорошо, но цена такого прибора достигает 200$, а более функциональных и 1000$. Можно сделать дешевле – простой прибор за 10$ позволяет проверить правильность соединения проводников и определить наличие каких-либо механических повреждений—обрывы и/или замыкания.

Но практически из подручных материалов которые есть у каждого, даже начинающего, сетевика можно изготовить простейший сетевой тестер. Для этого нам понадобиться джек и гнездо RJ-45.

Простейший кабельный тестер состоит из двух частей. Для первой возьмем джек RJ-45 и вставим куски витой пары что-бы замкнуть контакты в следующей последовательности 1-3, 2-6 (для проверки сетей 100МБит). Для второй части нужно взять гнездо RJ-45 (из старой сетевой карты или розетки) или можно взять розетку, хотя тогда не будет так компактно и также замкнуть пары 1-3, 2-6 (для проверки сетей 100МБит).

С помощью этого тестера можно даже проверять порты устройств просто вставляете джек тестера в гнездо, должен загореться Link, для проверки кабеля вставляете один конец в устройство другой в гнездо тестера и опять же смотрите загорелся ли Link на сетевой карте или коммутаторе.

Простейший тестер можно еще упростить, сделать только розетку с замкнутыми парами, а для проверки портов устройств использовать патч-корд небольшой длины. Материал предоставил СисАдмин.

Обсудить статью ТЕСТЕР КАБЕЛЬНЫХ СЕТЕЙ

Схема и фото самодельного устройства управления стоп сигналами автомобиля. Имеет повышенную информативность, по сравнению со штатным.

VIP СИГНАЛ

Самодельный автомобильный VIP – сигнал крякалка.

Как сделать трассоискатель своими руками

Гражданин К. давно мечтал поселиться где-нибудь на природе, вдали от шумной суетливой цивилизации большого города, среди тишины и покоя гармонии мира. И вот его мечта сбылась: он купил небольшой земельный участок на окраине села под строительство, в хорошем месте и даже с небольшим заброшенным садом… но тут-то ему пришлось столкнуться с таким проблематичным вопросом, как поиск трасс труб и кабельных линий, ведь не зная где они расположены:

  1. При строительстве можно повредить их, а если кабель находится под напряжением, то и подвести под риск собственную жизнь;
  2. О подключении к электричеству, газо- и водопроводу, не зная, где он проходит, можно забыть.

Но как найти эти злосчастные линии? Разрывать весь грунт и искать наугад. Вовсе нет! Просто нужно обратиться к помощи такого полезного прибора, как трассоискатель, позволяющего отыскать линии быстро и безопасно. Сегодня прибор можно приобрести в каждом специализированном магазине, можно изготовить трассоискатель своими руками. А как, мы и расскажем далее. Но, прежде, стоит разобраться: что это за прибор такой, трассоискатель.

Немного теории

Итак, трассоискатель – это уникальный прибор, позволяющий обнаружить линию прохождения кабеля или залегания труб. Современные устройства делятся на два типа по принципу работы;

  • Контактный принцип;
  • Индукционная разновидность.

Контактный принцип используется в случае разрыва кабеля, находящегося под напряжением.

Прибор, работающий по индукционному принципу, способен определять, как кабель под напряжением, так и пассивную трассировку, то есть, не подающую активных сигналов подземную коммуникацию. Индукционный метод более сложный и базируется на улавливании устройством высоких частот и регистрации данных показателей на специальном индикаторе.

Трассоискатели также подразделяются на одно- и многочастотные. Первые – наиболее приемлемый вариант, такие приборы несложно смонтировать самостоятельно, и применяются они для определения коммуникаций, расположенных под грунтом в том случае, когда одни трассы не пересекают другие, и, таким образом, не перекликаются исходящие от них сигналы.

Многочастотные устройства – более сложная конструкция и используются для определения сигналов трасс в случае высокой плотности кабельных линий и трубопроводов. Мультичастотные устройства способны определять указанную в программе частоту, не сбиваясь на другие. Современные приборы оборудованы программным обеспечением, что значительно облегчает работу, которая для пользователя заключается в одном нажатии на клавишу и прочтении полученной информации, высветившейся на индикаторе.

О назначении трассоискателей в горизонтально-направленном бурении и способах поиска трасс и кабелей смотрите здесь. Назначение обсадных труб, сфера их применения, пооизводители и правила выбора описаны тут.

Технология сборки

Устройство обладает несложной конструкцией и состоит из двух компонентов – приемника, на который поступает сигнал, и генератора, регулирующего работу прибора. Чем сильнее генератор, тем мощнее будет прибор и значительнее дальность расстояния, на котором он способен определять линии. Так, устройство, работающие от аккумулятора в 24 В, способно трассировать местность на 4 км и работать около ста часов бесперебойно. На работающий по такому принципу трассоискатель схема приведена ниже.

Как видно из чертежа, устройство комплектуется следующим образом: на транзисторе Т1, П14 собирается модулятор и генератор. При условиях, что выключатель приходит в разомкнутое состояние, транзистор с цепью базы создают генератор частой 1 кГЦ. И при включении контура, даже частичном, становится возможным увеличить нагрузку на прибор. Таким образом, при включении конденсатора, резко увеличивается мощность генератора, и он начинает работать в УКВ диапазоне.

Чтобы сконструировать трассоискатель кабельных линий своими руками, необходимо тщательным образом проработать его вторую часть, приемник.

Здесь важнейшим условием является тот факт, что магнитная антенна настраивается на напряжение звуковых частот генератора. Проходящий через транзисторы сигнал создает стабильную схему, а транзисторные каскады обеспечивают необходимое усиление, что гарантирует бесперебойную работу устройства.

Чтобы смонтировать кабельный трассоискатель схема на который приведена выше, потребуется следующее:

  • Берем гетинаксовую плату, которая будет основой будущего прибора.
  • Устанавливаем на переднюю панель клеммы питания.
  • Наматываем на ферритовое кольцо (диаметр 0.8 см) трансформатор первый, а второй – на стальной сердечник.

При сборке руководствуйтесь чертежами, чтобы не допустить ошибки.

Как сделать трассоискатель из старого плеера?

У многих в подвалах и на антресолях можно найти массу занятных вещиц, которые при умелой доработке, могут еще прослужить своему хозяину не один год. Так, из простого старого плеера можно сконструировать трассоискатель.

Добавляем клеммы питания и займемся поисковой катушкой. Для этого разбираем РКН и снимаем контактную катушку. Чтобы демонтировать пластину реле, нужно зажать ее в тисках и при помощи молотка выбить ее из катушки. Эта работа займет пару секунд не более. Теперь, когда все детали для будущего прибора получены, соединяем обмотки и вставляем в сердцевину стержень, который зажимаем с двух сторон.

В качестве зажимов может выступить любой подручный предмет, например пластмассовая трубка, которую достаточно только немного подточить, согнуть, чтобы деталь подходила по размеру и выполняла свою рабочую функцию фиксатора. Потратим еще пару минут на корректировку всего устройства, проверяем разводку, разъемы, надежность конструкции. Затем припаиваем провод к катушке, который после должен быть соединен с усилителем.

Работа готова. Как видите, это совсем не сложно для тех, кто имеет хотя бы элементарные знания в электронике.

Теперь вы знаете, как собрать трассоискатель своими руками схемы и поэтапная инструкция поможет вам выполнить эту нехитрую работу быстро и качественно. А нам только остается напоследок пожелать вам удачи и доброго дня!

Читайте также:  Частотомер своими руками — ТОП-3 схемы, инструкции по монтажу
Ссылка на основную публикацию