Осциллограф своими руками: ТОП-3 схемы, инструкции по сборке, характеристики

Осциллограф своими руками: ТОП-3 схемы, инструкции по сборке, характеристики

Осциллограф Карманный “OSKAR” своими руками.Пошаговая инструкция для самостоятельной сборки.

Автор: Гармаш Геннадий, gennadiy.v@gmail.com
Опубликовано 18.12.2014
Создано при помощи КотоРед.

Осциллограф карманный “OSKAR” – это универсальный радиоизмерительный прибор. Предназначенный для испытания и настройки радиоаппаратуры в полевых условиях, авто-электроники, радиолюбителей, наладчиков.


На экране осциллографа можно наблюдать изображения электрических сигналов синусоидальной формы с частотой от 0 Гц до 100 кГц (1МГц для версии V3.1) и импульсных сигналов любой формы и полярности с длительностью от бесконечности до 10 мкс, амплитудой от 20 милливольт до 70 вольт. Также осциллограф позволяет записывать медленно меняющие сигналы, продолжительностью до 80 секунд.
Осциллограф имеет встроенный вольтметр постоянного тока +/- 0-36в и омметр 0- 200 кОм.

Речь пойдет о достаточно хорошо зарекомендовавшем себя универсальном приборе второй версии. При всей своей простоте конструкции, его возможностей достаточно для применения радиолюбителями, автоэлектриками, наладчиками и в быту. Кроме своей основной функции осциллографического пробника, позволяет измерять напряжения, сопротивления, позванивать полупроводники и проверять светодиоды. Выполнен на доступных деталях и прост в настройке.

Подробнее о технических характеристиках:

– Габариты 130 *68 *19 мм
– Дисплей 50*30 мм 132*64 точек, светодиодная подсветка .
– Диапазон чувствительности 20 mV/div – 10 V/div с шагом 1-2-5 . Погрешность не более 5%.
– Открытый / закрытый вход
– Полоса пропускания 0 – 1 МГц.
– Диапазон разверток: – от 20 микросекунд на деление до 5 секунд на деление с шагом 1-2-5. Погрешность не более 0,1%.
– Частота выборок в реальном времени – до 0,8 МГц. Число точек экрана на одну выборку 1/1
– Комфортное наблюдение сигналов – до 100 килогерц.
– Режимы синхронизации : по фронту или спаду, ждущая, авто. Регулировка уровня.
– Запись в память и воспроизведение осциллограммы. “Замораживание” изображения для изучения. Измерение амплитуды и частоты
– Кнопки управления: вверх, вниз, установка.
– Питание : 3 элемента типа ААА , в среднем на 50 часов непрерывной работы. Напряжение питания 3,6 – 6вольт. Максимальное потребление 25мА
– Входное сопротивление / емкость – 0,5 МОм /30p. Открытый и закрытый входа
– Вольтметр постоянного тока с диапазоном +/- 36V точностью +/-3%
– Омметр с диапазоном 0 – 200 кОм точностью +/-5%

Конструктивно выполнен в прочном пластмассовом корпусе с оригинальным дизайном. Для подключения к проверяемой схеме используются обычные щупы от китайского мультиметра.

Принципиальная схема (кликабельно)

Скачать в формате sPlan 7.0

Ядром является микроконтроллер PIC18F14K50 фирмы “MICROCHIP”, который собственно и выполняет все функции прибора. Аналоговая часть выполнена на сдвоенном операционном усилителе MCP6022 с полосой единичного усиления 10 МГц и аналоговом коммутаторе. Для получения виртуальной земли используется PWM модуль микроконтроллера с фильтром и формирователем на ОУ MCP601. В качестве дисплея использован черно-белый графический индикатор RDX0154-GC (TIC154A) разрешением 132*64 точки с подсветкой RTB01025 (LG-9-02-053-001 или TB1038 или TB1025S). Питание всей схемы выполняется от стабилизированного источника 3,3 вольта (LM2950-3.3). Управление питанием выполнено на транзисторах Т2 и Т3.

Все элементы установлены на двухсторонней печатной плате с одной стороны, а дисплей с подсветкой и кнопками с другой. В итоге получается компактная , жесткая конструкция.

Расположение элементов (кликабельно)

Скачать в формате *.lay

Сборка

Для сборки нам понадобятся

Bat 1 = 1 x Держатель 3*AAA
C14 = 1 x 2400p 0805
C15 = 1 x 320p 0805
C21 = 1 x 10.0 10v
C1,C2,C7,C8,
C12,C13,C18,
C19,C20,C22,
C23,C25,C27 = 13 x 0.1 0805
C16,C17 = 2 x 27p 0805
C26,C28 = 2 x 100.0 10v
C3,C4,C5,C6 = 4 x 75p 0805
C9,C10,C11,C24 = 4 x 1.0 0805

D1,D2 = 2 x LL4148

DA1 = 1 x MCP6022 SO8
DA2 = 1 x MCP601

DD = 1 x PIC18F14K50 SO20

IC1 = 1 x 74hc4066 SO14

J1,J2,J3,J4,J5 = 5 x BANAN монтажное

LCD = 1 x RDX0154-GC

R1 = 1 x 75 0805
R6 = 1 x 12k 0805
R10 = 1 x 2k2 0805
R15 = 1 x 1k2 0805
R19 = 1 x 2k 0805
R21 = 1 x 22K 0805
R28 = 1 x 6k2 0805
R11,R12,R16 = 3 x 680k 0805
R13,R18 = 2 x 3k 0805
R14,R22,R23,
R24,R29,R31,
R32 = 7 x 22k 0805
R2,R5,R9,R17,
R26,R27 = 6 x 10k 0805
R3,R4,R30 = 3 x 220k 0805
R7,R8,R20,R25 = 4 x 1k 0805

S1,S2,S3 = 2 x Микрокнопка тактовая 301, 6х6х6мм

T2 = 1 x BC807
T1,T3 = 2 x BC817

VR1 = 1 x lp2950-3.3

XT1 = 1 x 12 MHz
Корпус = 1 x Z-34A

А также терпение, умение и прямые руки.

Приготовимся (Все картинки кликабельны)

Откусим с одной стороны втулку клеммы

Собираем электронику на печатной плате. После сборки прошьем процессор с помощью PICKIT2, для чего предусмотрены 6 отверсий для подключения программатора.

Приготовим панель подсветки, откусив ножки

Установим ЖКИ и кнопки

Добавим провода и отсек питания

Сборка электроники закончена , займемся корпусом.
Сначала его требуется разметить.Чертеж с размерами

Разметим переднюю панель изнутри с помощью “колумбика” и шилом наколим центра.

Получится примерно так

Сверлим диаметром 1 мм размеченные отверстия и вырезаем окно.

Сверлим диаметром 3,6 мм 8 отверстий.

Сверлим диаметром 3,6 мм 4 отверстия в задней крышке.

Сверлим диаметром 6 мм 5 отверстий, снимаем фаски, зенкуем, финишно обрабатываем проем окна, снимаем фаски.

Устанавливаем две клеммы омметра.

Механическая обработка корпуса окончена, можно убрать стружку и пыль, дальше должно быть все чисто.
Займемся наклейкой. Нам понадобится струйный принтер и прозрачная пленка для струйных принтеров. Печатаем вот такую наклейку

Скачать в формате *.fpl (программу делает та же фирма, что и sPlan)

Сушим, аккуратно вырезаем. Используем тонкие тканевые перчатки, иначе вид у наклейки будет совсем не презентабельный.

Приготовим корпус к наклеиванию. Нам понадобится тонкий двухсторонний скотч с пластиковой основой шириной 50 мм. Приклеим.

Удалим лишнее острым скальпелем.

Снимаем защитную бумагу второй стороны.

Очень аккуратно приклеиваем. Внимание , у Вас только одна попытка, повторить не повредив наклейку не получится.

Острым скальпелем прорезаем отверстия под клеммы и устраняем излишки скотча.

Корпус готов, можно собирать. Сначала установим три заранее обрезанных сбоку втулки клемм. Уберем защитную пленку с ЖКИ и оденем сверху лицевую панель. Вставляем клеммы.

Закручиваем клеммы, припаиваем провода к клеммам омметра, приклеиваем батарейный отсек. Должно получиться примерно так.

Калибровка , настройка.

Калибровка частотных характеристик аналоговой части.

Для данной процедуры нам понадобится генератор прямоугольных импульсов хорошего качества с выходным напряжением от 50 милливольт до 10 вольт частотой 1- 5 килогерц.
Как известно линейность АЧХ определяется переходной характеристикой, для этого и используются прямоугольные импульсы. Существует три варианта переходной характеристики входных цепей. Недокомпенсация, перекомпенсация, и нормальная. Это и показано на картинках.

Целью настройки является получение идеального прямоугольника на экране.

Всего требуется настройка трех цепей компенсации на пределах 50 мв/дел, 200 мв/дел, 2в/дел.
В первом случае подбираются конденсаторы С3-С6, во втором С15 , в третьем С14.
Для настройки выбрать нужный предел измерения и развертки, подать на вход сигнал достаточной амплитуды, и подобрать конденсатор до получения прямоугольного сигнала
Настройку проводить именно в этом порядке , начиная с 50 мв/дел.

Калибровка встроенного вольтметра.

Нам понадобится источник постоянного стабилизированного напряжения напряжением 15 – 20 вольт с точно известным напряжением.
Перейти в режим Vx – режим вольтметра постоянного тока.
Нажать и удерживать кнопку SET в течении примерно 20 секунд, не обращая на надписи на экране.
Нижней кнопкой установить нулевые показания , точность нуля можно проверить подключая источник напряжения в разной полярности – должны быть одинаковые напряжения с точностью не хуже 0,1 вольт.
подключить источник напряжения и верхней кнопкой выставить истинное значение напряжения.
Калибровка идет по кругу во всех случаях, нажимать до получения нужного результата.
Выход из режима калибровки. Нажать и удерживать кнопку SET в течении примерно 20 секунд, пока не выключится.

Калибровка встроенного омметра.

Нам понадобится точный резистор сопротивлением 70-150 кОм.
Калибровка проводится подбором резистора R17.
Перейти в режим Om – режим омметра. Подключить образцовый резистор и путем подбора R17 добиться показаний с точностью не хуже +/- 3%

На этом все калибровки окончены.

Управление осциллографом.

Включение / выключение – длительное нажатие кнопки «Установка».
Движение по меню – кнопка «Установка».
Выбор параметра – кнопки вверх, вниз.
В меню выбирается : (слева направо)
– Тип синхронизации : по фронту, по спаду. отображается характерными символами
– Установка значения частоты развертки. Отображается значение в мкс,мс,с.
– Уровень синхронизации , ориентир – треугольник слева экрана, синхронно перемещающийся вверх-вниз.
– Сдвиг по оси Y
– Режим синхронизации авто “At”, ждущий”Wt”,
– Усиление канала вертикального отклонения, отображается установленное значение.
– вкл/выкл подсветки индикатора.
– индикация состояния прибора
GO – нормальный режим работы
ST – остановка смены изображения и вывод измеренной амплитуды и частоты. Кнопка “SET” выводит строку с настройками
WR – кнопкой “SET” записать текущую осциллограмму в память
RD – кнопкой “SET” прочесть осциллограмму из памяти и вывести на экран
HL – вызов подсказки и краткого описания.
Vx – режим вольтметра постоянного тока. Щупы для измерения подключаются к клеммам “Общий” и “Открытый вход”
Om – режим омметра.
Перейти к первому пункту меню можно вернувшись в нормальный режим работы.
Включение в режиме демонстрации – включить удерживая кнопку “вверх”
При показе демонстрации включение подсветки – кнопка вверх, выход из демонстрации – вниз.
Режимы демонстрации и подсказки, и номера страниц пишутся в нижнем правом углу. В режиме демонстрации прибор автоматически отключится через 2-3 часа для предотвращения полного разряда батареи.
Уровень заряда батареи – в правом верхнем углу. При понижении напряжения ниже минимального прибор выключается

Применение и использование.

Подключение источника сигнала
Гнезда слева на право
– общий
– открытый вход
– закрытый вход
Максимальное напряжение – 100 вольт любой полярности. При превышении могут быть необратимо повреждены цепи прибора.
Если сигнал ограничен сверху или снизу или недостаточной амплитуды – переключите значение входного делителя для полного отображения сигнала.

Выбор режима работы

Режим работы осциллографа определяется видом и частотой развертки, видом синхронизации, ослаблением сигнала и соединением с исследуемой схемой. Если некоторые из этих условий неизвестны, то необходимо путем ряда проб определить, какой режим является наилучшим для исследования данного сигнала. Частота развертки. При выборе развертки следует помнить, что непрерывная развертка обычно используется для наблюдения синусоидальных колебаний или колебаний другой формы, а ждущая развертка сложит для наблюдения импульсных сигналов. Частота развертки выбирается с таким расчетом, чтобы на экране были видны все детали исследуемого сигнала. Изображение сигнала по горизонтали должно занимать возможно большую часть экрана. Увеличение частоты развертки увеличивает протяженность изображения по горизонтали. Установите переключатель TIME/DIV в положение, позволяющее наблюдать требуемое число периодов сигнала. При слишком большом числе периодов для лучшего разрешения, измените положение переключателя на большую скорость развертки. Если на экране присутствует линия, пробуйте перейти к более низкой скорости развертки. Так как если длительность развертки меньше периода сигнала, то только часть его будет показана на экране, и эта часть может выглядеть как прямая линия для прямоугольного или синусоидального сигнала.

Синхронизация развертки. Для хорошей синхронизации правильно выбирайте уровень и полярность синхронизации Цифровой запоминающий осциллограф позволяет регистрировать непериодические сигналы, например одиночный импульс, выброс и т.п. При регистрации однократного сигнала для правильного выбора уровня и фронта запуска, необходимо предварительно знать некоторые параметры этого сигнала. Например, для регистрации логического ТТЛ сигнала нужно установить уровень 2В и выбрать запуск по нарастающему фронту. Если параметры этого сигнала неизвестны, попробуйте получить осциллограмму обычным способом
Также осциллограф позволяет записывать медленно меняющие сигналы, продолжительностью до 80 секунд
В режиме измерений будет показано напряжение сигнала от нижнего пика до верхнего Vpp и частота измеренная по уровню синхронизации. Для измерения частоты на экране должно быть два полных периода сигнала по уровню синхронизации. Точность измерения определяется разрешением экрана (+/-5%) Сохраненная в памяти осциллограмма не стирается при отключении батареек. Вместе с ней сохраняются и режимы настроек, которые заменят текущие при чтении сохраненного сигнала. Текущие настройки автоматически сохраняются в энерго-независимой памяти при выключении.

Режим прозвонки
Перейти в режим омметра . При сопротивлении цепи менее 10 Ом индикатор будет моргать подсветкой. Запрещается подавать какое –либо напряжение на клеммы омметра

Требования по электробезопасности.

Портативный осциллограф предназначен для проведения измерений по категории II, степень загрязнения 1, макс. напряжение 600 В, в соответствии с нормами IEC1010-1/UL 94V0
Запрещается проводить измерения в помещениях с повышенной влажностью и загрязненностью; запрещается проводить измерения проводников, напряжение которых может превышать 600 В эфф. по отношению к земле; прибор предназначен для проведения измерений внутри помещений
Максимальное входное напряжение на разъемах прибора 100 В пик. (AC+DC) – аналоговый вход
Не открывайте корпус прибора во время проведения измерений
Во избежание удара электрическим током перед открытием корпуса прибора отсоедините все измерительные щупы от входных гнезд осциллографа при измерении напряжений, превышающих 70 В, используйте изолированные измерительные пробники со встроенными делителями.
Если прибор не планируется использовать в течение долгого времени, отключите батареи питания (под задней крышкой)

Читайте также:  Электронный термометр своими руками

Топ 5 лучших осциллографов с АлиЭкспресс

Всем добра! Сегодня приведу мой Топ 5 лучших осциллографов с АлиЭкспресс. Каждому Мастеру хочется иметь осциллограф в своем арсенале инструментов. Осциллографы хороши для диагностики электроники во включенном режиме. Ремонтники ласково называют их «ослики». Давно хотел собрать этот материал и все как-то руки не доходили. А тут Максим, мой активный читатель, попросил такую информацию. И я решил, что пора браться за дело. Подбор осциллов в топ проводился по: соотношению цена/качество, максимальная рабочая частота, количество каналов и др. Поехали!

Рейтинг лучших осциллографов

1. Rigol DS1054Z

  • Компактный и цифровой
  • Простое управление
  • Большой ЖК экран
  • Лучшее соотношение цена-качество
2. Gwinstek GOS-653G

  • Тайваньское качество
  • Высокое быстродействие
  • Отсутствие софтовых проблем
  • Хорошие щупы в комплекте
3. Jinhan JDS2022A

  • Осциллограф + мультиметр
  • Малые габариты и низкая цена
  • Популярный разъем BNC
4. Intrustar MDSO ISDS205A

  • USB-осциллограф
  • Нет дисплея, значит низкая цена
  • Два канала с щупами
5. Мини-осциллографы DSO

  • Форм-фактор телефона
  • Стоят очень дешево
  • Встроенный аккумулятор

Реальные характеристики цифровых осциллографов

Прежде всего с китайцами следует определиться где правда, а где «маркетинговый ход». Часто в характеристиках китайских осликов пишут рабочий диапазон частот до 20 МГц при частоте дискретизации 50 МГц. Такая цифра сильно натянута — сигнал на частотах 20 МГц будет искажен по форме и амплитуде и годится только для приблизительной оценки параметров. Чтобы определить реальную рабочую частоту, смотрите на частоту дискретизации и делите на 10.

Считается, что отображение сигнала достаточно верное, если на период синусоиды на максимальной частоте приходится минимум 10 точек дискретизации. По сути качество осцилла определяется быстродействием и разрядностью встроенного в осциллограф АЦП.

Преимуществом цифровых осциллографов является возможность выводить спектрограмму вместо осциллограммы. Это помогает определить частоту помехи, например в шинах питания или в трактах фильтрации. Точность и быстродействие конечно тоже хромает, но сама опция очень полезна в ремонте.

Начнем с серии карманных осциллографов с максимальной рабочей частотой до 500 кГц.

На 5 месте — серия китайских мини-осциллографов DSO

Серия Mini и Nano DSO — это карманные мини-осциллографы с рабочей частотой до 100 кГц — 500 кГц, с 1 — 4 каналами и максимальным напряжением 50 В. Самые популярные модели этой серии: DSO 062 , 068 , 112, 138 , 150, 201 , 203, 211. Отличаются модели между собой в основном корпусом, частотой дискретизации, размером экранчика, количеством каналов.

Пример работы с карманным осциллографом DSO203 смотрите в видеоролике.

Количество каналов: 1 — 4 в зависимости от модели

Аналоги:

  • Mini DSO 150 (30 $, 100 кГц, 1 канал, экран 2,4 дюйма),
  • Nano DSO 211 (70 $, 100 кГц, 1 канал, экран 2,9 дюйма, выглядит приличнее),
  • Mini DSO 203 (160 $, 7 МГц, 2 аналог. + 2 цифр. канала, экран 3 дюйма).

DSO FNIRSI (Новинка! 60 $, 30 МГц, 1 канал, экран 2,4 дюйма)

  • низкая частота дискретизации
  • маленькая разрядность АЦП 8 бит, можно только оценить форму сигнала
  • хлипкие разъемы щупов
  • проблемы с софтом — глючит на некоторых моделях, читайте отзывы
  • маленькое разрешение экрана
  • сверхмалые габариты
  • низкая цена осциллографа
  • встроенный аккумулятор

Сфера применения: измерение аудиосигналов, кварцевых генераторов, сигналов блоков питания с ШИМ. Подойдет для выездной диагностики аудиотехники и блоков питания.

На 4 месте — USB-осциллограф Intrustar MDSO ISDS205A

Intrustar MDSO ISDS205A — это двухканальный осциллограф с максимальной рабочей частотой 5 МГц и максимальным напряжением 6 В (60 В с пробником х10).

Видео обзор этого осциллографа смотрите ниже.

Количество каналов: 2

Аналоги:

  • Hantek PSO2020 (60 $, 10 МГц, 1 канал, осциллограф-ручка)
  • Hantek 6022BE (50 $, 5 МГц, 2 канала)
  • Intrustar MDSO ISDS205X (100$, 5 МГц, 2 канала, имеет анализатор логики и DDS генератор до 5 МГц)
  • OWON VDS1022I (120 $, 10 МГц, 2 канала)
  • нет дисплея
  • посредственные характеристики
  • инерционность отображения показаний
  • родной софт имеет недостатки
  • малые габариты, можно взять с собой на выезд
  • низкая цена осциллографа
  • распространенный разъем USB
  • поставляется с двумя хорошими щупами

На 3 месте — мультиметр-осциллограф Jinhan JDS2022A

Jinhan JDS2022A — это весьма достойный представитель гибридов мультиметра и портативного осциллографа. Он поставляется с двумя каналами без мультиметра и с 1 каналом и встроенным мультиметром. Максимальная рабочая частота составляет 20 МГц и максимальное напряжение канала осциллографа 50 В.

Как обращаться с таким гибридным осциллографом можно посмотреть в следующем видео.

Количество каналов: 1 — 2

Аналоги:

  • Jinhan JDS2023A (140 $, 20 МГц + генератор 5 МГц, 2 канала: аналог. + цифр.)
  • EONE ET201 (70 $, 200 кГц, 1 канал)
  • EONE Et310a (180 $, 5 МГц, 1 канал)
  • UNI-T UT81C (220 $, 16 МГц, 1 канал)
  • Micsig TO1104 (500$, 100 МГц, 4 канала, планшетный осциллограф, выглядит круто),
  • OWON VDS1022I (120 $, 10 МГц, 2 канала)
  • EM125 (110 $, 25 МГц, 1 канал)
  • Hantek 2d72 (170 $, 70 МГц, 2 канала + генератор сигналов + мультиметр)
  • маленький дисплей
  • инерционность отображения показаний
  • много не очевидных кнопок
  • малые габариты
  • низкая цена осциллографа
  • распространенный разъем BNC

Сфера применения: измерение цифровых сигналов, кварцевых генераторов, сигналов блоков питания с ШИМ, аудио и видеосигналов до 20 МГц. Подойдет для мастер на выезде по ремонту аудио, видеотехники и блоков питания.

На 2 месте — аналоговый осциллограф Gwinstek GOS-653G

Да-да, аналоговые осциллографы еще есть в продаже. Gwinstek GOS-653G — это двухканальный осциллограф с максимальной рабочей частотой 50 МГц и максимальным напряжением 400 В.

Как настраивать этот осциллограф для измерений смотрите в видеоролике ниже.

Количество каналов: 2

Аналоги:

  • Caltek CA620N (380 $, 20 МГц, 2 канала)
  • LongWei L212 (380 $, 20 МГц, 2 канала)
  • Gwinstek GOS-622G (1200 $, 100 МГц, 2 канала).
  • очень тяжелый, дорогая доставка
  • неоправданно высокая цена
  • трудно обращаться с маркерами
  • олдскульное тайваньское качество
  • высокое быстродействие
  • отсутствие софтовых проблем
  • поставляется с хорошими щупами

Сфера применения: измерение цифровых сигналов, частоты кварцевых генераторов, сигналов блоков питания с ШИМ, аудио, видео и радиосигналов до 100 МГц. Подойдет для Мастеров, умеющих обращаться с аналоговой техникой.

На 1 месте — компактный цифровой осциллограф Rigol DS1054Z

Это чудо китайской мысли! Rigol DS1054Z — это осциллограф с 4 (!) каналами и максимальной рабочей частотой 50 МГц (на 2 включенных каналах) или 25 МГц (на 4 канала). Рассчитан на максимальное входное напряжение 300 В.

Видеообозор смотрите в ролике ниже.

Количество каналов: 2 — 4

Аналоги:

  • Hantek DSO5102P (240 $, 100 МГц, 2 канала)
  • Hantek DSO4102S (300 $, 100 МГц, 2 канала)
  • Siglent SDS1102CNL (370 $, 100 МГц, 2 канала)
  • Siglent SDS2104 (1700 $, 100 МГц, 2 канала)
  • OWON SDS7102 (380 $, 100 МГц, 2 канала).
  • UNI-T UTD2102 (450 $, 100 МГц, 2 канала)
  • Gwinstek GDS-3352 DSO (6000 $, 250 МГц, 4 канала)
  • встречаются проблемы с прошивкой, глючит
  • дешевый пластик корпуса
  • оптимальные габариты
  • наличие ЖК экрана
  • хорошее соотношение цена/качество
  • простое управление

Сфера применения: измерение дискретных сигналов, сигналов кварцевых генераторов и блоков питания с ШИМ, аудио, видео и радиосигналов до 50 МГц. Подойдет для начинающих и профессиональных Мастеров ремонта.

На этом мой рейтинг Топ 5 лучших осциллографов с АлиЭкспресс закончен. Пишите в комментариях какой ослик у Вас и на какой китайский поменяли бы свой.

Цифровой осциллограф своими руками

Осциллограф — это незаменимый помощник в мастерской радиолюбителя. С его помощью можно наблюдать форму сигнала, измерить длительность, частоту, амплитуду. Цифровой осциллограф способен запомнить изображение на экране, выводить на экран сопутствующую информацию о сигнале и многое другое.

Стоит осциллограф дорого, особенно цифровой, а вот сделать его из набора не сложно и не дорого.

Как-то на днях купил я недорого набор для сборки цифрового осциллографа в китайском интернет магазине GEARBEST

Набор пришёл довольно быстро (около 2 нед) с подробной инструкцией, схемой на английском. Было всё понятно, т.к. описание в картинках подробно расписано шаг за шагом.

Принципиальная схема цифрового осциллографа DSO 138

Характеристики осциллографа

ОсновныеМодель: DSO138

Тип: набор DIY цифровой осциллограф

Материал: PCB плата, 2,4″ дисплей + все необходимые компоненты

Входное напряжение: DC 9V (стабилизированное)

Ток потребления: 120 мА

Ширина полосы входного сигнала: 0-200KHz

Чувствительность: 10 мВ / дел — 5В / Div (1 — 2 — 5 прогрессивный способ) электронное регулируемое вертикальное смещение

Частота дискретизации: 1Msps

Входное сопротивление: 1MОм

Макс. входное напряжение: 50Vpp (1:1 щуп)

Буфер: 1024 Bytes

Диапазон времени: 10 микросекунд / Div — 50s / Div (1 — 2 — 5 прогрессивный способ)

Точность: 12 бит

РазмерыРазмер экрана: 52 х 40 мм

Размер печатной платы: 117 х 76 мм

Вес и размер упаковкиВес продукта: 0,120 кг

Вес упаковки: 0,50 кг

Размер продукта (Д х Ш х В ) : 10 х 5 х 2 см

Размер упаковки (Д х Ш х В ) : 13,5 х 7,5 х 9,0 см

Подробное описание сборки набора осциллографа

Этот набор сложнее, чем рассматриваемый ранее набор частотомера, но при аккуратной и внимательной сборке работает сразу без проблем.

На печатной плате уже был припаян прошитый микроконтроллер. Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™ — M3 ядре. Максимальная частота работы 72 МГц, также он имеет 2 x 12-bit, 1 μs АЦП. Есть в других наборах уже впаяны все smd детали. В моём только микроконтроллер, но остальные я сам впаял без особого труда остро заточенным паяльником и в очках с подсветкой. Все smd детали были по количеству на одну больше для запаса на случай потери такой крохотульки

Шаг 1.

Чтобы было удобнее, пока на плате нет других деталей, первым делом я впаял все smd компоненты. Микроконтроллер (квадратик с выводами четырёх сторон), как я писал, был уже впаян.

Паяем аккуратно и не перегреваем микросхемы. Держать паяльник на одной ножке не более 2 сек! Используем припой (тонкая проволока с канифолью внутри) и паяльную пасту. Следим чтобы не перемыкали вывода между собой и в тоже время хорошо припаяны к контактным площадкам.

Шаг 2.

Далее я припаял все пассивные компоненты (сопротивления, дросселя и конденсаторы).

Тут без особых комментариев. Вставляем деталь согласно прилагаемой инструкции в печатную плату, обрезаем лишний отрезок вывода и хорошо припаиваем. Вокруг контактных площадок с обратной стороны платы близко подходит экранный слой. Поэтому паяйте аккуратно, чтобы припой не замкнул на экранный слой и соседние дорожки.

Немного о маркировке керамических конденсаторов: эти конденсаторы маркируются также как и резисторы. Первые две цифры — это число, третья цифра — количество нулей после числа. Например 121 — это 120 пф, 203 — это 22 000 пф или 22нф, 104 — это 100000 пф или 100 нф или 0,1 мкф.

У электролитических конденсаторов есть полярность. Не путаем + и !

Шаг 3.

Далее паяем всё оставшееся: диоды, транзисторы, кварц, светодиод, кнопки, разъёмы, переключатели…

При пайке транзисторов и диодов, так же как и микросхемы — не перегреваем! Держать паяльник на одной ножке не более 2-3 сек!

Диоды имеют катод и анод, поэтому при пайке смотрим на кольцо с одного краю (это катод). Не путаем так же установку транзисторов! Внимательно смотрим маркировку, они похожи на микросхемы — стабилизаторы 78L05 и 79L05

Разъёмы и переключатели хоть и блестят, но паяются плохо. Я предварительно зачистил ножки мелкой наждачкой.

При пайке кварца надо немного приподнять от платы, т.к. он металлический и может замкнуть контактные площадки. Можно подложить под него диэлектрик.

Шаг 4.

К плате дисплея нужно припаять только три разъёма.

После того как всё припаяно промываем плату спиртом не нужной зубной щёткой или ватным диском.

Шаг 5.

После того как плату просушили, ещё раз проверяем качество пайки.

После перед под соединением дисплея к основной плате припаяем две перемычки. Сделать их можно из откусанных выводов.

Шаг 6.

Подключаем питание. Источник питания: постоянное стабилизированное напряжение 9 В с максимальным током не менее 200 мА.

  1. Проверяем соответствия на разъёме 9 В.
  2. Проверяем в контрольной точке 3,3 В.
  3. Если всё нормально, выключаем питание и устанавливаем перемычку JP4.

Шаг 7.

Вставляем дисплей в разъёмы (3 шт).

Подключаем ко входу щуп (есть в комплекте) и включаем питание.

Если всё правильно, видим на экране сайт производителя, версию прошивки и номер дисплея:

Далее, через несколько секунд появляется шкала и синусоида, даже при не подключенных никуда щупе и включенном переключателе на максимальную чувствительность — 10мВ

Вверху два разъёма: вход сигнала и питание.

Слева находятся переключатели: измерение постоянной и переменной составляющей (открытый и закрытый вход).

Второй и третий переключатели — входной аттенюатор прибора (чувствительность) и аттенюатор после входного усилителя. Они позволяют выбрать масштаб по оси напряжения. Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.

С помощью второго переключателя выбираем напряжение, а третьего множитель. При помощи этих переключателей можно выбрать девять фиксированных уровней входного напряжения (от 10 мВ до 5 В).

Светодиод — индикатор наличия и синхронизации сигнала.

Справа — кнопки управления: запоминание, выбор, установки параметров (смещение, синхронизация, размах). Все изменения отображаются на экране по кругу. Нижняя кнопка — сброс.

Таблица напряжений в контрольных точках

Подстроечными конденсаторами устанавливаем правильную форму отображаемого сигнала. Для этого нужно подать источник прямоугольных импульсов. Лучше это сделать один раз с фабричного генератора стандартных сигналов. Можно подать сигнал от внутреннего генератора (фото ниже). Для этого подсоединяем красный «крокодил» щупа на перемычку J2 (вверху платы). Конденсаторами выравниваем чёткие прямоугольные формы.

Надеюсь, что обзор данного конструктора-осциллографа был интересен и окажется полезным при сборке. Удачи!

ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Этот обзор предназначен для людей, ставящих своей целью построение самодельных осциллографов низкого и среднего уровней сложности. Как правило цифровых, благо современная элементная база (микроконтроллеры) позволяют делать их не слишком сложными. Но и для аналоговых осциллографов многое из нижесказанного вполне применимо.

Данный обзор суммирует опыт, приобретенный мной при пробах и изготовлении более десяти (примерно 15) осциллографов.

Схемотехника построения осциллографов может быть самой различной, поэтому данный обзор не претендует на бесспорность и отражает лишь мой взгляд и мой опыт.

Итак. Для многих радиолюбительских задач считаю, что осциллограф должен позволять рассматривать сигналы с уровнем от 5-20 милливольт, до нескольких десятков вольт.

Чувствительность в милливольтах позволит отлавливать помехи и настраивать фильтры в цепях различных устройств и блоках питания.

Чувствительность в десятки вольт нужна при наладке и диагностике различных блоков питания, особенно импульсных.

Да и многие другие устройства значительно проще налаживать имея осциллограф.

Исходя из этого и получаем требования к входному аттенюатору. Я буду рассматривать аттенюатор, построенный на механических переключателях. Почему – объясню несколько позже.

К сожалению значительное количество ступеней делителя требует применения галетных переключателей. А они как правило весьма габаритны и плохо вписываются в миниатюрные любительские конструкции.

Из наиболее доступных и распространенных встречаются переключатели на три положения. Вот на них и будем ориентироваться.

Схемы входных аттенюаторов

Пожалуй наиболее часто встречается входной аттенюатор (делитель), собранный по схеме, приведенной на рисунке 1.

Схема может быть нарисована по разному, это не принципиально. Зачастую вместо переключателя используют специальные микросхемы – мультиплексоры, суть от этого не меняется. Просто вместо механики, используют микросхему, имеющую цифровое управление и позволяющую реализовать большее количество ступеней делителя, да еще и управляется это все счастье программно, кнопками.

Удобно вроде. Правда есть жирное «НО» в этом деле. При настройке осциллографа обычно подают на его вход прямоугольный сигнал и настраивают емкость С1 и С3, добиваясь плоских вершин импульсов. Примерно вот так. (Здесь и далее идут скриншоты из программы «Мультисим 12»).

Настройка обычно производится один раз. На одном конкретном диапазоне чувствительности. И на этом считается законченной.

Но вот при переключении на другие диапазоны чувствительности, при рассмотрении сигналов с другим напряжением, нас как правило ожидает проблема. Мы вместо прямоугольника можем увидеть такое:

И только конденсаторами С2 и С4 по схеме 1, не меняя настройки конденсатора С1, нам не удается никак это скомпенсировать.

Должен заметить, что на последних двух картинках изображены еще достаточно простые случаи, относительно понятные. А могут быть и куда круче. Вплоть до полной невменяемости. Что делать? Каждый раз настраивать С1? По моему опыту, многие просто даже не обращают внимания на этот нюанс настройки. Ну и в результате видят неизвестно что.

Конечно я не готов утверждать, что в принципе невозможно подобрать конфигурацию корректирующих цепей, составляя отдельные резисторы делителя из нескольких последовательно, со своими компенсирующими емкостями на каждом. Просто мне это не удалось. Ни в железе, ни в Мультисиме.

Чтобы избавиться от данного недостатка лучше применять другую схему входного аттенюатора. По рисунку 2.

Отличие от первой только в том, что переключается не только нижнее плечо делителя, но и верхнее. И частотно компенсирующая емкость для верхнего плеча каждого из делителей настраивается отдельно.

То есть при переключении диапазонов чувствительности картинка прямоугольного импульса меняться не будет. Как мы настроим каждый диапазон отдельно, так это и будет работать.

Но. Эта схема требует уже переключателя с двумя группами контактов. И для верхнего плеча уже в принципе невозможно применить мультиплексоры. Потому, что там действуют уже входные напряжения осциллографа. Т.е. программное управление затруднено.

Можно конечно применить мультиплексоры с электромагнитными реле на выходах и применять аттенюатор по схеме 2, но это вызовет резкий рост габаритов и энергопотребления осциллографа, что весьма нездорово для устройств с батарейным питанием.

Это и определяет то обстоятельство, что я считаю оптимальными именно механические переключатели. О чем упоминал выше.

Как вариант можно применить принцип как в DSO-138 и его последователях.

Клик для увеличения

Та же схема 2, но резисторы верхнего плеча соединены между собой. Но за это придется расплачиваться уменьшением входного сопротивления на диапазоне с максимальной чувствительностью. Из-за влияния ступеней делителя друг на друга.

Словом, на сегодняшний день, считаю оптимальным для несложных самодельных осциллографов использовать входной аттенюатор (делитель) по схеме 2.

Переключение диапазонов

И здесь мы подходим ко второй проблеме этого дела. Трех ступеней делителя НЕДОСТАТОЧНО. Получается, что наименьшие сигналы будет трудно рассмотреть и требуется дополнительное переключение либо растяжка по вертикали.

Можно применить галетники. Но это габариты, сопоставимые с габаритами самого ослика. Наименьший, что у меня есть – на 5 положений 2 направления, размерами чуть длиннее подстроечного советского резистора. Но 5 положений тоже мало, да и он выдран из японской техники очень давно и аналогов мне больше не попадалось. Не путь.

Последний из построенных мной осциллографов это «Осциллограф на микроконтроллере ATMEGA32А» с сайта bezkz. Его особенность в том, что он имеет программную растяжку 2 раза в 2 раза. То есть способен растягивать картинку в 2 и 4 раза.

С трехпозиционным переключателем диапазонов чувствительности получается всего 9 положений. И они достаточно неплохо друг друга перекрывают. Я применил в нем входной аттенюатор на одной плате с усилителем на AD823. Естественно с цепями защиты и т.д.

Еще один вариант осциллографа, который нацеливаюсь переделать, это VirtOS в версии от VetalST под дисплей LS020. Он у меня уже реализован в металле, но диапазон чувствительности (1 вольт на деление, от 2 до 8 делений на экран) не устраивает.

В нем есть программная растяжка в 2 раза и потенциометром еще в 2 раза. Т.е. снова два раза по два, как в «Электрике». Правда переключение уже будет не столь удобное. Но этот ослик мне симпатичен и очень хотел бы довести его до ума. Планирую добавить в него усилитель с аттенюатором и расширить диапазон в 100 раз вниз. Ну а щуп с делителем на 10 – повышает диапазон вверх.

Можно еще также рассмотреть входные усилители на ОУ. Особенности их применения. С конкретными схемами узлов и печатными платами. Но это уже тема для следующей статьи. А пока призываю тех, кто планирует разработку несложных осциллографов, отдать предпочтение все же механическим переключателям во входных делителях.

Для начинающих радиолюбителей такие схемы куда проще в изготовлении и настройке. И на практике мне лично куда удобнее переключать диапазоны просто щелкая переключателями, а не прыгать по пунктам меню кнопками, либо энкодерами. Специально для сайта Радиосхемы – Тришин Александр Олегович. Г. Комсомольск-на Амуре.

Обсудить статью ВХОДНЫЕ УЗЛЫ САМОДЕЛЬНЫХ ОСЦИЛЛОГРАФОВ

Осциллограф своими руками

Устройство с дисплеем на базе электронно-лучевой трубки, предназначенное для изучения параметров времени и амплитуды электрического сигнала, называется осциллографом. Подача сигнала осуществляется на вход устройства, результат записывается на фотоленту или выводится на экран. Оно возглавляет топ самых необходимых приборов, используемых для настройки и регулировки электронных схем.

Осциллограф и его функции

Это электронный прибор, на экране которого наблюдают за формой сигнала. В процессе работы доступен ряд опций:

  • фиксирование мгновенных характеристик;
  • аналогия фазовых смещений и форм сигналов с иными импульсами;
  • контроль и мониторинг синусоидальных, треугольных и прямоугольных колебаний;
  • развёртка импульса для измерения времени нарастания.

Проще говоря, это телевизионный приёмник, где отслеживается электросигнал визуально. Зная принципы работы и схему устройства, собирают осциллограф своими руками.

Классифицировать приборы возможно по следующим показателям:

  • особенности работы и предназначение;
  • количество сигналов, просматриваемых разом;
  • способ обработки информации;
  • вид воспроизводящего устройства.

По особенности работы подразделяются на модели: скоростные, стробоскопические, универсальные, запоминающие и специальные. Количество одновременно подающихся сигналов – один, два и более.

Важно! Многоканальные n-осциллографы высвечивают на экран n-графиков, считывая показания с n-го количества сигнальных входов.

Аналоговые и цифровые устройства делят между собой методы обрабатывания полученной информации. Узлы отображения сигналов представлены электронно-лучевыми трубками «ЭЛТ» или матричными панелями.

Схема простого осциллографа

Чтобы понять, как устроен прибор, изучают стандартную блок-схему.

В формировании сигнала на экране участвуют два вида отклонения луча: по вертикали и горизонтали. Пользуясь системой координат, эти развёртки обозначили как: Y и Х.

В блоке развёртки по вертикали выполняется обработка сигнала, подающегося в канал через аттенюатор. Он ступенчато регулирует амплитуду исследуемых величин, не допуская превышения должного уровня. Это удерживает изображение в границах дисплея.

Для синхронизации работы узла задающего генератора Х – отклонения с канала вертикальной развёртки на него подаётся сигнал. По умолчанию канал Y работает в открытом режиме. Отклонение луча по вертикали в этом случае в точности совпадает с уровнем сигнала. Помеха постоянной составляющей, при её наличии, будет смещать картинку или же загонять за границы дисплея. Это сильно мешает работе и требует постоянной подстройки ступенчатого регулятора.

Использование режима закрытого входа помогает этого избежать. Закрытый видеовход подразумевает включение конденсатора между ним и схемой. Конденсатор играет роль ёмкостного фильтра для постоянной составляющей входного сигнала.

Канал горизонтальной развёртки (X) подсоединяется к генератору. Тот выдаёт команды для отклонения луча ЭЛТ по горизонтали и действует в четырёх позициях:

  1. Режим внутренней синхронизации. Применяется для обработки сигнала, имеющего постоянную частоту. Возможна работа в режиме автоколебаний, где частота выставляется вручную. Выполняются захват частоты сразу после входа и повышение стабильности картинки.
  2. Режим внешней синхронизации, когда выполняется пуск генератора от входящего импульса. Актуален, когда синхронизация осуществляется от входа Y, по которому подаётся испытуемый сигнал. Команда запуска выполняется по фронту или спаду всплеска, а также по команде источника внешних пульсаций. Такой регламент работы удобен для рассмотрения нестабильных колебаний.
  3. Обеспечение синхронизации от сети питания 220 В, 50 Гц. Используется при определении искажений и помех от источников питания. Запуск блока происходит одновременно с импульсами напряжения сети.
  4. Однократный ручной пуск применим для слежения за сигналами логических схем непериодической природы. Чтобы снова включить генератор, его опять «взводят».

К сведению. Окончательное формирование уровней сигналов двух развёрток выполняют оконечные усилители.

Одноканальная модель

Такой прибор имеет один вход – один луч. Структурное строение показано на рис. выше. В состав схемы входят:

  • экран – ЭЛТ;
  • блок Y-развёртки: аттенюатор, предварительный усилитель, цепь задержки, начальное усиление синхронизации и оконечный усилитель выхода;
  • блок Х-развёртки: устройство синхронизации, узел развёртки, выходной усилитель;
  • схема усиления подсветки;
  • калибратор;
  • сетевой блок питания.

В таком приборе сигнал мониторинга подаётся на один вход и отображается движением луча на экране. Этого хватает для проведения измерений ряда параметров.

Двухканальные устройства

Когда требуется сравнить два вида сигнала, применяют такие приборы. Выделяют две разновидности:

  1. Двухканальные – для наблюдения импульсов с идентичных Y-каналов. Переключая тумблером, поочерёдно подают выходные сигналы на пластины ЭЛТ. Наблюдают отдельно каждый сигнал входов Y1-Y2 или совместно. Второй – при каждом обратном ходе развёртки.
  2. Двухлучевые – у них в наличии два отдельных Y-канала и двухлучевое исполнение ЭЛТ. У такого прибора совместный запуск генератора горизонтальной развёртки, включение вертикальной развёртки происходит для каждого канала отдельно. Это разрешает видеть 2 осциллограммы одновременно.

Многоканальные модификации

Современные аппараты выполняют мониторинг импульсов по нескольким каналам. Различают входы: аналоговые, цифровые или смешанные. Модели со смешанными каналами обрабатывают оба вида сигнала с выводом картинки на монитор.

Сборка устройства на 5 В

Полноценный цифровой прибор этой линейки без собственного дисплея называется USB oscilloscope. Продаются наборы комплектующих материалов для изучения работы с подобными устройствами. В комплект входят:

  • прибор;
  • кабель питания юсб;
  • 2 щупа с «крокодилами»;
  • программный продукт на диске.

Подключается к ПК через шнур USB. Собранный из набора измеритель подойдёт для приобретения начальных навыков. В самодельных схемах такая приставка собирается на микросхеме ММР20.

Осциллографы на 10 В

В схемах с подобным напряжением применяются резисторы закрытого типа и стабилитрон. Их параметры чувствительности по вертикали подбираются до 2 мВ. При расчёте полосы пропускания максимальное сопротивление устройства согласовывается с ёмкостью проводных конденсаторов. Диоды подбирают с напряжением 2 В, резисторы желательно выбирать полевые. Выбор диодов на такое напряжение позволит снизить частоту дискретизации до минимума и увеличить скорость передачи. Из-за быстрой развёртки данных предельная частота резко падает. Использование стабилитрона или делителя, выполненного из модулятора, поможет решить эту проблему.

Как сделать модель на 15 В

При сборке используют линейные резисторы, сопротивление которых на уровне предела – 5 Мом. Это разрешает стабилитрону работать в щадящем режиме. При выборе конденсаторов предварительно тестером измеряется пороговое напряжение.

Внимание! Полученные результаты тестирования, при использовании для прибора настроечных резисторов, бывают неточными. Использовать подобает линейные резисторы.

При сборке не забывают смонтировать порт, присоединяемый через щуп к микросхеме, при этом через шину подключают делитель. Использование вакуумных диодов в сборке позволит контролировать уровень амплитуды колебаний.

Использование резисторов серии ППР1

Приборы, в состав которых входят элементы этой линейки, весьма популярны. Благодаря высокой чувствительности, применяются для мониторинга электроаппаратуры. Для создания этого измерителя потребуются ЭЛТ, импульсный модулятор, выпрямитель и контакторы с обкладками. Установка кенотрона оправдана точностью полученных показаний. Устройство оперативного типа требует установки контроллера.

Величина сопротивления не выше 34 Ома, а проводимость сигнала с коэффициентом 4,2-4,5 Ом. Через модулятор низкой проводимости выполняют подключение USB-порта. Спектральные расширители для схемы берутся импульсного типа.

Важно! Необходимо организовать стабилизацию напряжения, расширитель закрепить рядом с компаратором, который уменьшит тепловые потери.

Модели с резисторами ППР3

Выполнить сборку схемы с этими резисторами допустимо с применением сеточных конденсаторов. Сопротивление ёмкостной цепи Rц возможно до 4 Ом. В сборку на микросхеме ММР20 устанавливают не менее 3 шт. Важно делать проверку проводимости ППР3 до включения схемы.

Устройства с подавлением колебаний

Определение зашумленности сигнала и подавление выполняет отдельный узел. Схемы, включающие в себе такой блок, имеют значения предельной частоты не выше 4 Гц. В этом случае используются аналоговые диоды и микросборки сеточного типа.

Сборка карманного осциллографа на основе «андроида»

Если частота, подлежащая измерениям, лежит в диапазоне 20 кГц (звук слышимости ухом), то используют наушники с микрофоном. Чтобы собрать новый прибор на основе ОС «Андроид», можно обойтись без дополнительных узлов. Из гарнитуры берётся разъём 3,5 мм. К микрофонным контактам припаиваются щупы. Между ними и штекером вставляется коммутатор пределов измерения. Скачивают на телефон приложение «Осциллограф». Сигнал, поступающий на вход микрофона, будет отображаться на экране.

Плюсы и минусы «андроидной» сборки

Недостатков в таком методе больше, чем плюсов. Минусы:

  • не даёт точности измерений;
  • разрешает мерить только высокочастотные сигналы;
  • нельзя померить переходные процессы при постоянном напряжении;
  • подвергается опасности вход гаджета.

Плюсов мало:

  • 20 минут времени на монтаж;
  • сборка несложная.

Трудно назвать эту приставку хорошим измерительным прибором.

Сборка осциллографа из планшета

Смонтировать осциллограф из ноутбука или планшета возможно с помощью приставки Hantek-6022BE-2-20-USB-PC. Планшет используется как монитор. Управление измерениями командой – с экрана или «мышкой».

Программное обеспечение для осциллографа на планшете и андроиде

Если usb осциллограф из звуковой карты изготовлен своими руками, скачивается ПО. Программу качают на «Плей Маркете» или других аналогичных сайтах для скачивания приложений. Подобные программы позволяют не только добиться точности измерений для планшета, но и выполнять нужную калибровку сигнала.

Широкодиапазонная частота с помощью отдельного гаджета

Расширить частотный диапазон позволит применение отдельного устройства. Оно включает в себя преобразователь аналога в цифру. Дальнейшая подача импульсов происходит в цифровом формате. Точность измерений повышается. Выпускается в виде портативного прибора с дисплеем.

Осциллограф из планшета на «Андроид»

При приобретении приставки-осциллографа выбирается ОС не «виндовс», а «андроид». Приставка должна поддерживать опции:

  • вluetooth-канал;
  • передача данных с помощью Wi-Fi.

Это позволит обойтись без контактной привязки гаджета с приставкой.

Bluetooth-канал

У подключения через Bluetooth присутствуют ограничения:

  • у тестируемой частоты граница – 1 МГц;
  • U щупа = 10 В;
  • зона покрытия – 10 м.

Это ограничивает ресурс при применении подключений такого типа.

Передача данных с помощью Wi-Fi

Подключить осциллограф из планшета фирмы Linux или иного производителя допустимо посредством беспроводной сети – wi fi канала. Пакет измерений выдаётся на планшет без промедления и для неограниченного количества участников проекта. Наличие опции записи позволяет работать с информацией в версиях офлайн и онлайн. Дальность соединения выше, чем у Bluetooth.

USB осциллограф своими руками схема

Используя источник 5 В и подключение через шнур usb, можно самостоятельно собрать такую схему.

Создание подобных приборов самостоятельно оправдано при измерениях, не требующих точных результатов. Подход к решению вопроса – это использование уже готовой полноценной приставки.

Видео

STM32F103C8T6 — делаем осциллограф. Часть 3

А описание некоторых ключевых особенностей под катом.

Аналоговая часть

Почти всё как было описано во второй части, кроме источника двухполярного питания. ОУ потребляют значительный ток (порядка 10 мА) и как не пытался схемами умножителей напряжения на диодах и конденсаторах получить приемлемых результатов — не удалось. Поэтому для положительного напряжения поставил вот такой модуль на основе МТ3608:

настроенный на 10 В выходного напряжения. А отрицательное напряжение получаю путём инвертирования положительного с помощью LT1054.

Про размер кода

В первой части я писал, что памяти потребляется очень много. Теперь я дошёл до того, что программа не влазит в память и изучил этот вопрос подробней.

CooCox CoIDE выводит информацию о размер программы в таком виде:

где

  • text — размер сегмента с кодом, векторами прерываний и константами только на чтение;
  • data — размер сегмента с инициализированными не нулём переменными;
  • bss — размер сегмента с неинициализированными и инициализированными нулём переменными.

Вся программа занимает:

  • флеш — text + data + 10..50 байт
  • ОЗУ — data + bss + 10..50 байт

Теперь посмотрим на что тратится память. Делаем новый проект и компилируем:

Чтобы использовать макросы типа GPIO_BSRR_BS9 надо подключить файл stm32f10x.h.
Чтобы подключить файл stm32f10x.h надо в репозитоях добавить компонент STM32F10x_MD_STDLIB, который подтягивает за собой cmsis_core. В итоге для программы, записывающей одно значение в регистр получаем:

Далее меня интересуют функции типа sprintf и sscanf. Чтобы их использовать надо определить некоторые функции типа _sbrk и возможно некоторых других. Я взял готовый файл (есть в архиве с проектом). Добавляем 1 вызов sscanf и получаем:

Режимы работы

Реализовал 3 режима по принципу действия: непрерывный, пакетный и логический и 3 по количеству каналов: 1, 2 и 4-х канальный.
МК имеет 9 аналоговых входов, но я не представляю когда мне может понадобиться больше 4-х каналов.

Непрерывный

Тут всё просто: в главном цикле МК считываем данные АЦП и передаём их на ПК, где можем строить непрерывный график. Недостаток — ограничение скорости со стороны канала МК -> ПК. Чтобы его обойти реализовал ещё 2 режима.

Пакетный

В этом режиме МК вначале набирает данные, потом пачкой передаёт на ПК. Опционально его можно разгонять. Про разгон подробно писал в предыдущих частях.

В этом режиме возможна синхронизация. Причём можно анализировать сигнал до выполнения условия. Для реализации такого функционала пришлось изменить режим работы DMA на кольцевой, использовать прерывание заполнения половины буфера и использовать буфер вмещающий в 2 раза больше данных, чем в передаваемом пакете.

В отличие от проектаbaghear у меня триггер программный. Преимущества такого решения:

  • Меньше деталей, а значит меньше цена и проще монтаж;
  • Возможность в будущем реализовать более сложные триггеры, а не просто «сигнал в A канале стал больше Х».

В одноканальном режиме оба АЦП по очереди преобразуют значение одного канала.
В двухканальном — каждый АЦП преобразует свой канал запускаясь одновременно с другим.
В 4-х канальном — у каждого АЦП есть 2 канала, которые он преобразует. Старт обоих АЦП одновременный.
Очевидно, что скорость частота преобразования канала обратнопропорциональна количеству каналов.

Логический анализатор

Самый быстрый режим. Примерно 20 MSPS на каждом канале. Самый быстрый код для этого режима выглядит так:

и так далее на весь буфер.
Значение переменной i в этом случае вычисляются на этапе компиляции и в итоге из dataBuffer.u8[++i] = GPIOA->IDR; получается всего 2 операции — загрузить данные в регистр из порта и сохранить данные в память по заранее посчитанному адресу. Никакими циклами такой производительности достичь не получилось.

Программа для ПК

Главные, на мой взгляд, измение — переход на OpenGL. С ним графики рисовать стало проще (для меня это оказалось неожиданно, но там всё действительно просто и кратко!), рисуются они быстрее и получаются гораздо красивей, чем были раньше.

Проект не завершён, есть глюки, допиливать ещё много чего, но каких-то прорывов уже не предвидится. Для более быстрых систем нужно другое железо, например, отдельный АЦП + ПЛИС + память — а это уже будет гораздо дороже и сложнее монтировать.

Почитав комментарии к статье «История одного осциллографа на stm32» сразу отвечу на некоторые вопросы:

  • Дисплей прикручивать не собираюсь т.к.:
    • Он стоит денег, а комп есть.
    • По качеству будет хуже, чем на большом экране ПК.
    • Создавать и изменять пользовательский интерфейс на C# проще, чем паять и перепаивать.

  • Я не планирую его доводить коммерческого продукта и продавать.
  • Делал для 2-х целей: освоить МК и сделать себе цифровой осциллограф.

Архив с проектом
Если у кого появятся вопросы, а тут не зарегистрированы, пишите в почту: adefikux на gmail точка com.

Читайте также:  Генератор синусоидального сигнала
Ссылка на основную публикацию