Термометр с модулем DS18B20 на основе платы Arduino: схемы

Ардуино термометр на основе датчика температуры DS18B20

Один раз мы уже реализовали проект термометра на основе датчика температуры DS18B20. Сегодня мы сделаем термометр на основе этого датчика другим способом, разберемся с DS18B20 и используем несколько дополнительных библиотек.

Мы сделаем LCD-термометр или, как вариант, Serial-термометр (напечатает данные о температуре на последовательном мониторе Arduino IDE) на основе микроконтроллера Ардуино и цифрового датчика DS18B20, макетов, перемычек. Таким образом, вы сможете измерять температуру воздуха, жидкости, например, воды и температуру земли.

Информация о сенсоре DS18B20

DS18B20 – это цифровой температурный датчик с интерфейсом 1-Wire от Maxim IC. На выходе мы получаем информацию в Цельсиях с точностью от 9 до 12 бит, от -55 до 125 (+/- 0,5). Каждый датчик имеет уникальный 64-разрядный серийный номер, что позволяет использовать огромное количество датчиков на одной шине данных.

Особенности:

  • Для уникального интерфейса 1-Wire® требуется только один порт для связи.
  • Каждое устройство имеет уникальный 64-битный последовательный код, хранящийся в ПЗУ.
  • Многоточечная возможность упрощает использование распределенных температурных зондов.
  • Не требует внешних компонентов.
  • Может питаться от линии передачи данных.
  • Диапазон мощности от 3,0 до 5,5 В.
  • Измеряет температуру от -55°C до + 125°C (от -67 °F до + 257 °F) ± 0,5°C от -10°C до + 85°C.
  • Разрешение термометра выбирается пользователем от 9 до 12 бит.
  • Преобразует температуру в 12-битное цифровую переменную в 750 мс (макс.).
  • Определяемые пользователем энергонезависимые (NV) настройки сигнализации.
  • Команда поиска по тревоге идентифицирует и адресует устройства, температура которых находится за пределами запрограммированных пределов (состояние аварийной сигнализации).
  • Применяется в термостатических устройствах, промышленных системах, потребительских товарах, термометрах или в любых термических чувствительных системах.

Комплектующие

Чтобы сделать термометр, вам понадобятся следующие детали:

  • Плата Arduino (UNO, DUE, Micro и т.п.);
  • Датчик DS18B20 (водонепроницаемый или нет);
  • Резистор 4.7К (в некоторых магазинах продается датчик с резистором 4,7 тыс.);
  • ЖК-дисплей 16×2 с шиной I2C;
  • Макет;
  • Перемычки.

Из программного обеспечения нужно иметь установленную Arduino IDE.

Библиотеки

Прежде чем вы начнете делать термометр, загрузите и распакуйте следующие библиотеки для Arduino в:

/Progam Files (x86)/Arduino/Libraries (по умолчанию):

Все библиотеки вы можете скачать по ссылкам выше или на нашем сайте в разделе Библиотеки.

Термометр через последовательный монитор

Чтобы отобразить данные на последовательном мониторе, подключите датчик DS18B20 к Arduino, используя перемычки и макет, и не забудьте подключить или припаять резистор 4.7k между контактом 2 и 3 датчика.

Затем скачайте, откройте и загрузите файл .ino, который называется – DS18B20_Serial, ниже.

Если все в порядке, вы должны увидеть измеренную температуру на серийном мониторе Arduino IDE.

Термометр с ЖК-дисплеем

Если вы не хотите измерять температуру через последовательный монитор, то этот шаг для вас.

Подключите ЖК-дисплей I2C к контактам UNO:

Затем скачайте и загрузите файл .ino, который называется – DS18B20_I2C_LCD. Если все в порядке, вы увидите показания температуры на дисплее.

Урок 10 – Датчик температуры DS18B20, подключаем к Arduino.

В предыдущем уроке мы рассмотрели подключения датчика температуры и влажности DHT11 к Arduino. И выяснили что данный датчик не очень точный. Чем же его можно заменить? Одним из распространенных датчиков для измерения температуры являться DS18B20. Рассмотрим в данном уроке варианты подключения датчика, пару примеров программного решения.

Характеристики датчика DS18B20:

  • Погрешность измерения не больше 0,5 С (для температур от -10С до +85С). Не требуется дополнительная калибровка.
  • Диапазон измерений от -55 С до +125 С.
  • Напряжение питания от 3,3В до 5В.
  • Датчик обладает своим уникальным серийным кодом.
  • Не требуются дополнительные внешние элементы.
  • Можно подключить сразу до 127 датчиков к одной линии связи.
  • Информация передается по протоколу Wire.
  • Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода. Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.

Датчик выпускается в открытом корпусе в виде транзистора для измерения температуры воздуха.

Можно купить датчик в виде модуля DS18B20. Распаренный на плате.

Также датчик DS18B20 продеться в закрытом корпусе для измерения температуры жидкости.

Для урока нам понадобиться:

Подключаем датчик DS18B20 к Arduino NANO вот по такой схеме.

Подключение датчика DS18B20 к Arduino UNO будет вот таким.

Для написания программы нам понадобиться библиотека OneWire.

Данную библиотеку можно установить из менеджера библиотек или скачать отсюда.

Код ниже будет выводить показание температуры в монитор порта каждую секунду.

Но данный пример достаточно сложный для понимания. Для упрощения работы с датчиком лучше использовать библиотеку DallasTemperature. Данная библиотека ставиться поверх OneWire. Т.е. для ее роботы должна быть установлена библиотека OneWire.

С библиотекой DallasTemperature устанавливаются примеры. Вы можете воспользоваться любым из них.

Мы рассмотрим более простотой пример.

В данном примере температура выводиться 1 раз в секунду. И при этом выводится температура в Цельсиях и фарингитах.

Как видите данный пример намного меньше и более понятен для новичка.


На одну шину можно подключить до 127 датчиков вот по такой схеме.

С библиотекой DallasTemperature идут примеры которые позволяют получать данные с датчиков при током подключении.

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Спасибо за внимание!

Понравилась статья? Поделитесь ею с друзьями:

Датчик температуры Arduino DS18B20

Датчик температуры в Arduino – один из самых распространенных видов сенсоров. Разработчику проектов с термометрами на Arduino доступно множество разных вариантов, отличающихся по принципу действия, точности, конструктивному исполнению. Цифровой датчик DS18B20 является одним из наиболее популярных температурных датчиков, часто он используется в водонепроницаемом корпусе для измерения температуры воды или других жидкостей. В этой статье вы найдете описание датчика ds18b20 на русском, мы вместе рассмотрим особенности подключения к ардуино, принцип работы датчика, описание библиотек и скетчей.

Описание датчика DS18B20 для Arduino

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Микросхема имеет три выхода, из которых для данных используется только один, два остальных – это земля и питание. Число проводов можно сократить до двух, если использовать схему с паразитным питанием и соединить Vdd с землей. К одному проводу с данными можно подключить сразу несколько датчиков DS18B20 и в плате Ардуино будет задействован всего один пин.

Виды корпусов DS18B20

Температурный датчик DS18B20 имеет разнообразные виды корпуса. Можно выбрать один из трех – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Последний является наиболее распространенным и изготавливается в специальном влагозащитном корпусе, так что его смело можно использовать под водой. У каждого датчика есть 3 контакта. Для корпуса TO-92 нужно смотреть на цвет проводов: черный – земля, красный – питание и белый/желтый/синий – сигнал. В интернет-магазинах можно купить готовый модуль DS18B20.

Где купить датчик

Естественно, что DS18B20 дешевле всего купить на Алиэкспрессе, хотя он продается и в любых специализированных российских интернет-магазинах с ардуино. Приведем несколько ссылок для примера:

Особенности цифрового датчика DS18B20

  • Погрешность измерения не больше 0,5 С (для температур от -10С до +85С), что позволяет точно определить значение температуры. Не требуется дополнительная калибровка.
  • Температурный диапазон измерений лежит в пределах от -55 С до +125 С.
  • Датчик питается напряжением от 3,3В до 5В.
  • Можно программно задать максимальную разрешающую способность до 0,0625С, наибольшее разрешение 12 бит.
  • Присутствует функция тревожного сигнала.
  • Каждое устройство обладает своим уникальным серийным кодом.
  • Не требуются дополнительные внешние элементы.
  • Можно подключить сразу до 127 датчиков к одной линии связи.
  • Информация передается по протоколу 1-Wire.
  • Для присоединения к микроконтроллеру нужны только 3 провода.
  • Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода. Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.
Читайте также:  Цифровой мультиметр MAS830 - обзор и технические характеристики

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Во время включения питания датчик находится в состоянии покоя. Для начала измерения контроллер Ардуино выполняет команду «преобразование температуры». Полученный результат сохранится в 2 байтах регистра температуры, после чего датчик вернется в первоначальное состояние покоя. Если схема подключена в режиме внешнего питания, микроконтроллер регулирует состояние конвертации. Во время выполнения команды линия находится в низком состоянии, после окончания программы линия переходит в высокое состояние. Такой метод не допустим при питании от паразитной емкости, так как на шине постоянно должен сохраняться высокий уровень сигнала.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Подключение DS18B20 к Arduino

DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.

Обмен информацией в 1-Wire происходит благодаря следующим операциям:

  • Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
  • Запись данных – происходит передача байта данных в датчик.
  • Чтение данных – происходит прием байта из датчика.

Для работы с датчиком нам понадобится программное обеспечение:

  • Arduino IDE;
  • Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.

Из оборудования понадобятся:

  • Один или несколько датчиков DS18B20;
  • Микроконтроллер Ардуино;
  • Коннекторы;
  • Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
  • Монтажная плата;
  • USB-кабель для подключения к компьютеру.

К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.

Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.

В режиме паразитного питания контакт Vdd с датчика подключается к GND на Ардуино – в этом случае пригодятся только два провода. Работу в паразитном режиме лучше не использовать без необходимости, так как могут ухудшиться быстродействие и стабильность.

Скетч для DS18B20

Алгоритм получения информации о температуре в скетче состоит из следующих этапов:

  • Определение адреса датчика, проверка его подключения.
  • На датчик подается команда с требованием прочитать температуру и выложить измеренное значение в регистр. Процедура происходит дольше остальных, на нее необходимо примерно 750 мс.
  • Подается команда на чтение информации из регистра и отправка полученного значения в «монитор порта»,
  • Если требуется, то производится конвертация в градусы Цельсия/Фаренгейта.

Пример простого скетча для DS18B20

Самый простой скетч для работы с цифровым датчиком выглядит следующим образом. (в скетче мы используем библиотеку OneWire, о которой поговорим подробнее чуть позже).

Скетч для работы с датчиком ds18b20 без delay

Можно немного усложнить программу для ds18b20, чтобы избавиться от функции delay(), тормозящей выполнение скетча.

Библиотека DallasTemperature и DS18b20

В своих скетчах мы можем использовать библиотеку DallasTemperature, упрощающую некоторые аспекты работы с датчиком ds18b20 по 1-Wire. Пример скетча:

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. Скачать OneWire можно здесь. Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include

Основные команды библиотеки OneWire:

  • search(addressArray) – ищет температурный датчик, при нахождении в массив addressArray записывается его код, в ином случае – false.
  • reset_search() – производится поиск на первом приборе.
  • reset() – выполнение сброса шины перед тем, как связаться с устройством.
  • select(addressArray) – выбирается устройство после операции сброса, записывается его ROM код.
  • write(byte) – производится запись байта информации на устройство.
  • write(byte, 1) – аналогично write(byte), но в режиме паразитного питания.
  • read() – чтение байта информации с устройства.
  • crc8(dataArray, length) – вычисление CRC кода. dataArray – выбранный массив, length – длина кода.

Важно правильно настроить режим питания в скетче. Для паразитного питания в строке 65 нужно записать ds.write(0x44, 1);. Для внешнего питания в строке 65 должно быть записано ds.write(0x44).

Write позволяет передать команду на термодатчик. Основные команды, подаваемые в виде битов:

  • 0x44 – измерить температуру, записать полученное значение в SRAM.
  • 0x4E – запись 3 байта в третий, четвертый и пятый байты SRAM.
  • 0xBE – последовательное считывание 9 байт SRAM.
  • 0х48 – копирование третьего и четвертого байтов SRAM в EEPROM.
  • 0xB8 – копирование информации из EEPROM в третий и четвертый байты SRAM.
  • 0xB4 – возвращает тип питания (0 – паразитное, 1 – внешнее).

Подключение нескольких датчиков температуры DS18B20 к Ардуино

Все датчики DS18B20 подключаются параллельно, для них всех достаточно одного резистора. При помощи библиотеки OneWire можно одновременно считать все данные со всех датчиков. Если количество подключаемых датчиков более 10, нужно подобрать резистор с сопротивлением не более 1,6 кОм. Также для более точного измерения температуры нужно поставить дополнительный резистор на 100…120 Ом между выходом data на плате Ардуино и data на каждом датчике. Узнать, с какого датчика получено то или иное значение, можно с помощью уникального серийного 64-битного кода, который будет выдан в результате выполнения программы.

Для подключения температурных датчиков в нормальном режиме нужно использовать схему, представленную на рисунке.

В режиме паразитного питания схема выглядит иначе. Контакт Vdd практически не задействован, питание идет через выход data.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

Термометр ds18b20 и его подключение к arduino

DS18B20 — это цифровой датчик температуры. Датчик очень прост в использовании. Во-первых, он цифровой, а во вторых — у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.

Arduino датчик температуры DS18B20

DS18B20 имеет различные форм-факторы. Так что выбор, какой именно использовать, остается за вами. Доступно три варианта: 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Серфинг по eBay или Aliexpress показывает, что китайцы предлагают версию TO-92 во влагозащищенном корпусе. То есть, вы можете смело окунать подобное чудо в воду, использовать под дождем и т.д. и т.п. Эти сенсоры изготавливаются с тремя выходными контактами (черный — GND, красный — Vdd и белый — Data).

Читайте также:  Схемы цифровых мультиметров DT830, DT 838 и M932

Различные форм-факторы датчиков DS18B20 приведены на рисунке ниже.

Модель DS18B20 во влагозащищенном корпусе:

DS18B20 удобен в использовании. Запитать его можно через контакт data (в таком случае вы используете всего два контакта из трех для подключения!). Сенсор работает в диапазоне напряжений от 3.0 В до 5.5 В и измеряет температуру в диапазоне от -55°C до +125°C (от -67°F до +257°F) с точностью ±0.5°C (от -10°C до +85°C).

Еще одна крутая фича: вы можете подключить параллельно вплоть до 127 датчиков! и считывать показания температуры с каждого отдельно. Не совсем понятно, в каком проекте подобное может понадобится, но подключить два сенсора и контролировать температуру в холодильнике и морозильной камере можно. При этом вы оставите свободными кучу пинов на Arduino… В общем, фича приятная.

Что вам понадобится для контроля температуры с помощью Arduino и DS18B20

  • Естественно, вам необходима Arduino IDE;
  • Библиотека OneWire library, которая значительно облегчает работу с Arduino и датчиком DS18B20;
  • Скетч…

Скачать Arduino IDE можно с официального сайта Arduino.

Библиотеку OneWire Library можно скачать на OneWire Project Page (желательно скачивать последнюю версию библиотеки).

  • Как минимум один цифровой датчик температуры DS18B20;
  • Контроллер Arduino (в данном примере используется Arduino Uno);
  • 3 коннектора;
  • Монтажная плата (Breadboard);
  • USB кабель для подключения Arduino к персональному компьютеру.

USB кабель необходим для программирования нашего Arduino. После того, как вы «зальете» скетч на плату, можно подключать ее к отдельному источнику питания.

Подключение DS18B20 к Arduino

Датчик подключается элементарно.

Контакт GND с DS18B20 подключается к GND на Arduino.

Контакт Vdd с DS18B20 подключается к +5V на Arduino.

Контакт Data с DS18B20 подключается к любому цифровому пину на Arduino. В данном примере используется пин 2.

Единственное, что необходимо добавить из внешней дополнительной обвязки — это подтягивающий резистор на 4.7 КОм.

Схема подключения DS18B20 к Arduino показана ниже (в скетче, который будет приведен ниже, проверьте строки 10 и 65. В них указаны пины, к которым вы подключали контакт сигнала с датчика и режим питания!):

На рисунке ниже приведена фотография нашей простой схемы «в жизни».

Паразитное и обычное питание

Есть альтернативный вариант подключения — так называемое «паразитное» подключение. В этом случае мы не будем подключать пин +5V к пину Vdd на датчике DS18B20. Вместо этого мы подключим контакт Vdd с датчика DS18B20 к GND. Преимущества такого подключения очевидны: нам понадобится всего два коннектора!

Недостатком такого подключения является ограничение количества одновременно подключаемых сенсоров. Кабели для подключения должны быть максимально короткими!

В общем, с «паразитным» подключением надо быть аккуратнее и лучше его все-таки не использовать. Результаты (значения температур) могут оказаться самыми неожиданными.

Скетч для Arduino и сенсора DS18B20

Установливаем библиотеку OneWire Library

После того как вы скачали архив с библиотекой, ее надо импортировать. Для этого в Arduino IDE выберите пункт “Sketch” — “Import Library” — “Add Library” и выберите архив, который вы скачали. Если у вас возникли проблемы, с установкой библиотеки, ознакомьтесь с инструкцией по установке библиотек в Arduino.

Загружаем скетч на Arduino

Скетч, который представлен ниже, есть в библиотеке OneWire, в категории examples. Перейдите в “File” — “Examples” — “OneWire” и выберите пример “DS18x20_Temperature”. Код программы представлен ниже.

Данный пример использует библиотеку OneWire Library, для того, чтобы собрать данные со всех подключенных датчиков температуры DS28B20 (как подключить несколько сенсоров описано в конце статьи) и отобразить их в окне серийного монитора Arduino IDE.

В окне серийного монитора вы увидите примерно следующее:

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

Обычное или паразитное питание?

DS18B20 может работать в обычном или в так называемом «паразитном» режиме. В обычном режиме для подключения используется 3 коннектора, в «паразитном» режиме — в его лишь 2.

Вам надо настроить правильный режим в скетче, чтобы снять достоверные показания с датчика:

  • Для «паразитного» режима в строке 65 надо указать: ds.write(0x44, 1);
  • Для обычного режима в строке 65 указывается: ds.write(0x44);

Убедитесь, что вы указали корректные пины!

В строке 10, где указано “OneWire ds(2);” устанавливается пин, к которому подключен контакт data с сенсора.

В этом примере использован пин 2, но значения пина по умолчанию в примере OneWire стоит на 10. Можно использовать и его.

Схема подключения датчика температуры DS18B20 к Ардуине

Приведена схема подключения цифрового датчика температуры DS18B20 к плате Arduino и описан процесс получения данных с датчика. Также случай нескольких датчиков описан.

Часто приходится измерять температуру окружающей среды, или, скажем, требуется сделать простой домашний термометр на базе Arduino. Для этих целей нам понадобится цифровой датчик температуры, совместимый с Ардуино. Имхо, датчик DS18B20 – лучший в своем роде по соотношению качества/цена. Стоит он около доллара и имеет достаточно хорошую точность, плюс-минус 0.5 градуса.

Технические характеристики датчика DS18B20:

— интерфейс 1-Wire (т.обр., занимает один пин на ардуине для его подключения);

— измеряемая температура от -55 до +125 °C;

— точность 0.5 град. в диапазоне от -10 до +85 °С;

— температура считывается 9-ю битами данных;

— время на конвертацию температуры — 0.75 сек.

Схема подключения DS18B20 к Arduino

Как видно, у датчика три вывода: земля GND , питание VDD и вывод DQ для передачи данных по линии 1-Wire.

На вывод DQ надо повесить резистор (в районе 4.7 кОм плюс-минус) и можно подключать его к плате ардуино. К какому цифровому выводу подключать – не суть важно – это задается в программе. Например, если подключать на pin 10 (как на рисунке), то надо в программе задать

Простой пример работы с DS18B20 (с помощью библиотек)

Приведем полный текст программы для работы с датчиком:

– здесь самый высокоуровневый способ работы с датчиком, когда используется не только библиотека OneWire, но и библиотека DallasTemperature.

Скачать эти библиотеки можно отсюда:

Конечно, OneWire обычно идет вместе со средой, так что нужно только DallasTemperature.

Только с помощью OneWire.h

Впрочем, можно обойтись и без библиотеки DallasTemperature, тогда нужно будет в ручную отправлять команды на датчик. Для этого нужно знать собственно команды. Посмотрим сначала на пример такого кода:

По сути здесь мы просто сами реализовали некоторые нужные нам функции, которые есть также в классе DallasTemperature (используемом в примере выше).

Внутри датчика DS18B20 стоит свой небольшой контроллер, с которым ардуина общается посредством команд. Команды передаются с помощью метода write класса OneWire:

write(byte) – основной метод класса OneWire, который передает байт данных на устройство. Байт представляет собой определенную команду. Для DS18B20 это следующие основные команды:

0x44 – провести измерение температуры и записать данные в оперативную память;

0x4E – записать 3 байта в 3й, 4й и 5й байты оперативной памяти;

0xBE – считать последовательно 9 байт оперативной памяти;

0x48 – скопировать 3й и 4й байты оперативной памяти в EEPROM;

0xB8 – скопировать данные из EEPROM В 3й и 4й байты оперативной памяти;

0xB4 – вернуть тип питания (0 – паразитное, 1 – внешнее);

Информация об измеренной температуре хранится в оперативной памяти датчика, которая состоит из 9 байт:

1 и 2 байты – хранят информацию о температуре.

3 и 4 байты – хранят соответственно верхний и нижний пределы температуры.

5 и 6 байты – зарезервированы.

7 и 8 байты – используются для сверхточного измерения температуры.

Читайте также:  Электронный термометр своими руками

9 байт – хранит помехоустойчивый CRC код предыдущих 8 байт.

Вот список основных методов класса OneWire:

search(addressArray) – Выполняет поиск следующего 1-Wire устройства, если устройство найдено, то в 8-байтный массив addressArray записывается его ROM код, иначе возвращает false;

reset_search() – Выполняет новый поиск с первого устройства;

reset() – Выполняет сброс шины, необходимо перед связью с датчиком;

select(addressArray) – Выполняет выбор устройства после сброса, передается ROM Код устройства;

write(byte) – Передает информационный байт на устройство;

write(byte,1) – Передает информационный байт на устройство, работающее в паразитном режиме питания;

read() – Считывает информационный байт с устройства;

crc8(dataArray,length) – Вычисляет CRC код байтов из массива dataArray длиной length.

Порядок взаимодействия с DS18B20 для получения информации о температуре:

– Посылаем импульс сброса и принимаем ответ термометра.

– Посылаем команду Skip ROM [CCh].

– Посылаем команду Convert T [44h].

– Формируем задержку минимум 750мс.

– Посылаем импульс сброса и принимаем ответ термометра.

– Посылаем команду Skip ROM [CCh].

– Посылаем команду Read Scratchpad [BEh].

– Читаем данные из промежуточного ОЗУ (8 байт) и CRC.

– Проверяем CRC, и если данные считаны верно, вычисляем температуру.

При этом происходит следующее:

1) МК генерирует сигнала reset, удерживая шину 1-wire в состоянии лог. 0 в течении 480 мкс.

2) Ждем не менее 15 мкс, но не более 60 мкс. За это время подтягивающий резистор поднимает уровень на шине до лог. 1.

3) Датчик удерживает шину в состоянии лог. 1 в течении не менее 60 микросекунд. Если за это время шина не сменит свое состояние на лог. 0, то значит на шине ошибка либо датчик нерабочий (это помогает выявить неисправный датчик).

Короче, здесь всё достаточно мудрено. Чтобы не париться, используем готовую библиотеку DallasTemperature, либо код, что я привел выше.

Схема подключения двух и более датчиков температуры DS18B20 к одной плате Ардуино

Хорошая новость заключается в том, что к шине 1-wire можно подключать несколько датчиков, не обязательно одних и тех же. В этом случае шина должна быть подтянута одним резистором.

Arduino и цифровой датчик температуры DS18B20

DS18B20 – это цифровой датчик температуры. Датчик очень прост в использовании.

Во-первых, он цифровой, а во вторых – у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.

Arduino датчик температуры DS18B20

DS18B20 имеет различные форм-факторы. Так что выбор, какой именно использовать, остается за вами. Доступно три варианта: 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Серфинг по eBay или Aliexpress показывает, что китайцы предлагают версию TO-92 во влагозащищенном корпусе. То есть, вы можете смело окунать подобное чудо в воду, использовать под дождем и т.д. и т.п. Эти сенсоры изготавливаются с тремя выходными контактами (черный – GND, красный – Vdd и белый – Data).

Различные форм-факторы датчиков DS18B20 приведены на рисунке ниже.

Модель DS18B20 во влагозащищенном корпусе:

DS18B20 удобен в использовании. Запитать его можно через контакт data (в таком случае вы используете всего два контакта из трех для подключения!). Сенсор работает в диапазоне напряжений от 3.0 В до 5.5 В и измеряет температуру в диапазоне от -55°C до +125°C (от -67°F до +257°F) с точностью ±0.5°C (от -10°C до +85°C).

Еще одна крутая фича: вы можете подключить параллельно вплоть до 127 датчиков! и считывать показания температуры с каждого отдельно. Не совсем понятно, в каком проекте подобное может понадобится, но подключить два сенсора и контролировать температуру в холодильнике и морозильной камере можно. При этом вы оставите свободными кучу пинов на Arduino. В общем, фича приятная.

Что вам понадобится для контроля температуры с помощью Arduino и DS18B20

  • Естественно, вам необходима Arduino IDE;
  • Библиотека OneWire library, которая значительно облегчает работу с Arduino и датчиком DS18B20;
  • Скетч.

Скачать Arduino IDE можно с официального сайта Arduino.

Библиотеку OneWire Library можно скачать на OneWire Project Page (желательно скачивать последнюю версию библиотеки).

  • Как минимум один цифровой датчик температуры DS18B20;
  • Контроллер Arduino (в данном примере используется Arduino Uno);
  • 3 коннектора;
  • Монтажная плата (Breadboard);
  • USB кабель для подключения Arduino к персональному компьютеру.

Ссылки для заказа необходимого оборудования из Китая

USB кабель необходим для программирования нашего Arduino. После того, как вы “зальете” скетч на плату, можно подключать ее к отдельному источнику питания.

Подключение DS18B20 к Arduino

Датчик подключается элементарно.

Контакт GND с DS18B20 подключается к GND на Arduino.

Контакт Vdd с DS18B20 подключается к +5V на Arduino.

Контакт Data с DS18B20 подключается к любому цифровому пину на Arduino. В данном примере используется пин 2.

Единственное, что необходимо добавить из внешней дополнительной обвязки – это подтягивающий резистор на 4.7 КОм.

Схема подключения DS18B20 к Arduino показана ниже (в скетче, который будет приведен ниже, проверьте строки 10 и 65. В них указаны пины, к которым вы подключали контакт сигнала с датчика и режим питания!):

На рисунке ниже приведена фотография нашей простой схемы “в жизни”.

Паразитное и обычное питание

Есть альтернативный вариант подключения – так называемое “паразитное” подключение. В этом случае мы не будем подключать пин +5V к пину Vdd на датчике DS18B20. Вместо этого мы подключим контакт Vdd с датчика DS18B20 к GND. Преимущества такого подключения очевидны: нам понадобится всего два коннектора!

Недостатком такого подключения является ограничение количества одновременно подключаемых сенсоров. Кабели для подключения должны быть максимально короткими!

В общем, с “паразитным” подключением надо быть аккуратнее и лучше его все-таки не использовать. Результаты (значения температур) могут оказаться самыми неожиданными.

Скетч для Arduino и сенсора DS18B20

Установливаем библиотеку OneWire Library

После того как вы скачали архив с библиотекой, ее надо импортировать. Для этого в Arduino IDE выберите пункт “Sketch” – “Import Library” – “Add Library” и выберите архив, который вы скачали. Если у вас возникли проблемы, с установкой библиотеки, ознакомьтесь с инструкцией по установке библиотек в Arduino.

Загружаем скетч на Arduino

Скетч, который представлен ниже, есть в библиотеке OneWire, в категории examples. Перейдите в “File” – “Examples” – “OneWire” и выберите пример “DS18x20_Temperature”. Код программы представлен ниже.

Данный пример использует библиотеку OneWire Library, для того, чтобы собрать данные со всех подключенных датчиков температуры DS28B20 (как подключить несколько сенсоров описано в конце статьи) и отобразить их в окне серийного монитора Arduino IDE.

В окне серийного монитора вы увидите примерно следующее:

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

Обычное или паразитное питание?

DS18B20 может работать в обычном или в так называемом “паразитном” режиме. В обычном режиме для подключения используется 3 коннектора, в “паразитном” режиме – в его лишь 2.

Вам надо настроить правильный режим в скетче, чтобы снять достоверные показания с датчика:

  • Для “паразитного” режима в строке 65 надо указать: ds.write(0x44, 1);
  • Для обычного режима в строке 65 указывается: ds.write(0x44);

Убедитесь, что вы указали корректные пины!

В строке 10, где указано “OneWire ds(2);” устанавливается пин, к которому подключен контакт data с сенсора.

В этом примере использован пин 2, но значения пина по умолчанию в примере OneWire стоит на 10. Можно использовать и его.

// пример использования библиотеки OneWire DS18S20, DS18B20, DS1822

OneWire ds(2); // на пине 10 (нужен резистор 4.7 КОм)

Ссылка на основную публикацию